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Preface

Physical organic chemistry is a remarkably ill-defined subject; witness the
‘almost complete lack of overlap in the subject matter covered in four recent
text books with that title. The physical principles of organic chemistry are now
universally taught at the university level; nevertheless it would seem that there
is a wide diversity in the approach to the subject.

This book is an attempt to present physical organic chemistry from the point
of view of reactions, but with strong emphasis on physical principles which are
separately discussed. Furthermore the organization is such as to draw together
reactions taking place via a common type of reactive intermediate and thus the
emphasis is upon the chemistry of these important and often controversial
species. This has the advantage of enabling topics such as aromatic electro-
philic substitution, olefin addition and superacid chemistry to be treated under
one heading, and to discuss their common characteristics as carbonium ion
reactions.

All methods of subdividing an integrated subject such as organic chemistry
must have disadvantages, however, and in the present treatment the reader
will have to seek information on substitution at the aromatic ring under some
five separate headings according to the type of intermediate involved. The
inconvenience thus caused should be compensated by thorough indexing and
full cross-referencing.

This book treats only reactions which proceed by way of reactive inter-
mediates; single-step reactions are included where appropriate (e.g. nucleo-
philic aliphatic substitution and polar eliminations) to contrast the
characteristics with related multistep processes. In scope it is intended for the
undergraduate rather than the specialist but includes material somewhat
beyond most degree courses for those interested in the subject.

1973 ' N. S. IsAACS
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~ Chapter 1
Physical Ptinciples of Organic Chemistry

1.1 THE VALENCE STATES OF CARBON

The notinal state of combination of carbon is tetracovalent and this is brought
about by the pairing of each of the valence electrons (252 and 2p?) with four
electrons provided by the ligands. In the saturated, tetrahedral form charde-
teristic, say of methahe, this is accomplished by the ‘hybridization’ of the
carbon atomic orbitals (1a) to & set of four equivalent orbitals, denoted sp?
(1b), each of which overlaps with a 1s orbital of a hydrogen atom (i¢). The
tesult is four localized two-electron bonds set as far apart from each other as is

(1b) T (10)

geometrically possible. By altertiative hybridization schemes, sp? and sp,
trigonal and digonal bonding arrangements may be realized, one and two 2p
orbitals being retained for n-bond formation as in ethylene (2), and acetylene
(3), respectively. In each of thiese states, carbon exhibits a formal tetracovalency

2p )
2x sp2 ) — co¢
% 2 @z
$,
. 1

d
2
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and a filled octet of valence electrons. Other, less usual, valence states of carbon
may be formed in reactions, but are transient high-energy species which tend to
revert rapidly to.the tetracovalent state. Species containing these unusual
valence states are some of the reactive intermediates which form the subject of
this book. ’ _ o
Trivalent carbon is well established. If three ligands are attached to-a central
carbon atom by two-electron o-bonds, the remaining orbital may hold two,
one or no electrons; no other possibilities are permitted. This results in the
formation of a carbanion (4), a free radical (5);"and a carbonium ion (6),

'sp3 /CII/ "y
\ g \
S "
@ @ ()
. ‘\ !
sp (C- (C-— V,\_
6 6 / \\]
1
4 (5) (6)

respectively, with formal charges of =1, 0 and +1. In principle we may describe
the structures of these species using sp> or sp* hybrid orbitals, which will
produce either a pyramidal or a planar geometry. Of these three types of
trivalent carbon, only the carbanion has a filled octet. The radical and the
carbonium ion are both electron deficient. In its chemistry, the carbanion
tends to be an electron-pair donor (a nucleophile), the carbonium ‘ion an
electron-pair acceptor (an electrophile), and the radical tends to react with
other unpaired electron species and form a new two-electron bond.
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N
The double-barbed arrow -\ signifies the movement of an electronpair, and the
singly-barbed arrow-—~the movement of an unpaired electron.

Divalent carbon compounds are also known. Some of the possible forms
these could take are shown in 7. However, it seems that only the neutral form

(=) &) +) (1)
°c: ‘c. ¢ ¢ c
X . AN 2 /0N 4N

] b c d e
' )

(7¢), has any existence whfch has so far been discovered. Compounds with two
covalent bonds and an unshared pair at carbon are known as carbenes
(methylenes) and many member: of this family are believéd to be formed very
transiently in certain reactions (Chapter 6). Carbenes will react with almost
anything and, if nothing better is available, will dimerize;

ClCi+ iCCl, —— ChC=CCl

Monovalent carbon compounds such as R—C: may be formed very
transiently in high-temperature reactions (e.g. flames, electric discharges) but
not apparently in reactions occurring under more mild conditions.

Pentavalent carbon'is traditionally considered to be energetically impossible
since the bonding would require bringing in high-lying carbon 3s orbitals. Very
recently this view has had to be modified since it now appears that pentavalent
cations of carbon, e.g. CHs* (8a), may be involved in very acidic media. The
subject is discussed further (Section 2.30). It is unlikely that bonding involves
higher atomic orbitals of carbon, and a three-centre two-electron bond as in
B;H, (8b) is assumed. '

H

+3--H H.
Hllll/, ; H’//,,I e \\B\\\‘\\H
H/}., : WY e VH

(8a) (8b)
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The bonding discussed above refers to the lowest (ground) electronic states.
All molecules may in principle be promoted to an excited electronic state by
absorption of a quantum of radiation of the appropriate energy. This results in
the reorganization, in the main, of the highest lying valence electrons.

1.2 THE ENERGETICS OF REACTIONS

Chemical reactions are the spatial reorganizations of atoms and of the valence
electrons which constitute covalent bonds. Except in the case of photo-
chemical reactions, only the lowest (ground) electronic state of the reagents is
involved and the passage from the reagents to the products may be considered
to take place in a continuous fashion. Thus at any intermediate stage during
the progress of a reaction, it is possible in principle to describe the reacting
system in terms of its energy, the coordinates of all the atoms and so on. The
progress of the reaction can then be mapped on a multidimensional ‘surface’;
the most favourable pathway, the ‘reaction coordinate’, will be that which
requires the system to acquire the least amount of potential energy along the
route. In real terms, the problem of determining (by calculation) the potential
energy surface of a multi-atom system is an immensely difficult task in
computation and only recently have solutions for quite small systems been
attempted. However, the concept-of a reaction coordinate is qualitatively
useful and can aid our understanding of reaction mechanisms.
Consider the case of the siinple exchange reaction:

A+B—C —— A—B+C

If the three atoms retain a linear arrangement throughout, the only coordinate
variables are the internuclear distances A, B and B, C. A three-dimensional
graph of these two variables plotted against the third, potential energy, can be
represented in two dimensions by drawing contours of equal eangy (Figurela).
It will be noticed that there is a relatively easy route from initial to final states
along the energy ‘valley’ a-b, over the saddle-point b, and finally by descent
through the valley b—c, in analogy with the map of a mountain pass. If we plot
the potential energy of this route, which is the reaction coordinate, against
some measure of progression along it, a curve such as Figure 1b is obtained.
This indicates that even in the most favourable circumstances the reacting
system must acquire potential energy in order to react, this process being
known as ‘activation’. The minimum amount of energy required, the
‘activationenergy’, is the difference between the energies of the initial or reagent
state, a, and the saddle-point, b, which is known as the ‘transition state’. This
energy is supplied to the reacting molecules as thermal energy—Xkinetic,
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Bond distance A-B
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,," d s\
;78B40
/ \
/ ‘
’./ o ;/,l"—-vTronsmon state
/ Co
! \
Actvatio \
energy
/ \
7 \
a =7t __ . Heatof\ \ A-B+C
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Figure 1. (a) Schematic potential energy surface fora simple displacement
reaction; (b) reaction pathways for the concerted reaction (solid line)

and non-concerted reaction (dashed line).
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vibrational and rotatlonal energy of the reactants. At any instant, only a small
fraction of molecules will possess sufficient energy to surmount the potential
barrier to reaction. It can be seen that any pathway other than the reaction
coordinate between reagents and products will require an even greater amount
of activation and will therefore be less favourable. For instance, compare the
pathway a~d-c (Figure 1b) by which the B—C bond is first broken and then
the A—B bond formed in two separate steps. The activation energy is much
larger. It appears, in this case at least, that reaction occurs by a concerted bond
making and bond breaking, that the energy released by the former in part
compensates for the energy required by the latter. The net reaction is exo-
thermic, the heat of reaction being the difference in energy between reagents
and products. Another point to note is that the most favourable pathway from
between products back to reagents is the same reaction coordinate ; information
on the course of a reaction in one direction is therefore applicable for the
reverse reaction. This is known as the ‘Principle of microscopic reversibility’.
A potential energy diagram of this type would be applicable to a displacement
reaction at a saturated carbon, such as:

H H H
- AN 8 s
T J—C — |----£----C| — —C,,  CI-
H\\ l § ¥I \ "H
H H

transmon state

We know that activation energy is required for almost all chemical reactions to
occur, since their rates increase with temperature. At higher temperatures, a
greater proportion of the reactants will possess the necessary kinetic energy to
pass over the activation barrier.

1.3 SIMPLE AND COMPLEX REACTIONS

The reaction discussed above was charactérized by a single activation barrier
along the reaction coordinate and may be designated a ‘concerted’ reaction.
Many common reactions are of this type even though they may involve large
molecules and the formation and breaking of several covalent bonds, for
example in f-elimination:

__H ~H
. oM ol
OH . " H
. C’H iy B S H H
Sexge! | et ?” | —— T >e—cC
WY Go H ¢l 'H H
H F ci-

transition state
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and in the Diels-Alder reaction:

1 S o
2 Ho .
_~CH C'H 24
HC/\_I/v HC’ HC-_‘"‘(_:/C\ HCX:‘C’C\
ﬂ (\ é 4 o — 1 (I: 0
l| Hy J Hyo |
0 (o) (o]

transition state

On the other hand, many organic reactions are more complex in thé sense that
the reaction coordinate has more than one energy maximum and consequently
One or more reactive intermediates represented by an energy minimum (Figure
2d-i), but nonetheless a high-energy species with respect to reagents and
products. A reactive intermediate has some stability with respect to small
displacements along the reaction coordinate unlike a transition state which is
unstable. An intermediate may be represented by a conventional valence-bond
structure (or series of structures) whereas a transition state must often be
represerited with partly formed bonds. Intermediates have a finite lifetime
which under appropriate conditions may extend to isolation as a stable species.
The lifetime of the transition state of a reaction is exceeding’y short, probably
of the order of a period of vibration (ca 10~'? s). Some examples of reactions
which proceed via one or more reactive intermediates are given below and will
be discussed in more detail in later chapters. Further schematic. reaction
coordinate diagrams are given in Figure 2.
Tertiary halide hydrolysis .
slow 8* 8- +

(CHC—Br+ H0 s [(CH;);Cn-Br] ——  (CH)C Br
transition state intermediate

. carbonium ion

fast | H0

(CH;3);C—OH +(H*)
Base decomposition of chloroform

_Cl .
tBuo-’\uﬁt,,,,,,CI — BuOH+iCg  —— B+ cr
\m (o cl Ci
intermediate intermediate
carbanion carbene

|G
. O
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{b) Equiibrium A<t

0 ; 0
CH C OHO"‘CH C OHp
O—H
6,’\
+
RoH  OM;
RCI

(e) Pre- equmbnurn

R— OHoHO ““R-OH -—*R-Cl

Hzo

(h) Complex reaction,
iwo intermediales

CHC130OH—-0 (:Cl3 —_— 'CClZ

l

products

{c) Irreversible con-
certed reaction

OH™» CH3CI —= CH,OH «CI"

(f) 2-Step reaction,
the second slow.

cieoNton

COOE?

1
Thermodynomic —4, _,
product

= {t) 2-Step reaction,
with two poths from
the intermedigte

Me HCLH o, ot
N_L /Y\/
cr. ct
N
A

Figure 2. Schematic reaction pathways for various reaction types.



