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Preface

Three classical interpolation theorems form the foundation of the modern
theory of interpolation of operators. They are the M. Riesz convexity the-
orem (1926),G.O. Thorin’s complex version of Riesz’ theorem (1939), and the
J. Marcinkiewicz interpolation theorem (1939). The ideas of Thorin and
Marcinkiewicz were reworked some twenty years later into an abstract theory
of interpolation of operators on Banach spaces and more general topological
spaces. Thorin’s technique has given rise to what is now known as the complex
method of interpolation, and Marcinkiewicz’ to the real method. Both have
found widespread application, have extensive literatures attached to them,
and remain very much alive as subjects of current research.

This is a book about the real method of interpolation. Our goal has been to
motivate and develop the entire theory from its classical origins, that is,
through the theory of spaces of measurable functions. Although the influence
of Riesz, Thorin, and Marcinkiewicz is everywhere evident, the work of
G. H. Hardy, J. E. Littlewood, and G. Polya on rearrangements of func-
tions also plays a seminal role. It is through the Hardy-Littlewood - Pélya
relation that spaces of measurable functions and interpolation of operators
come together, in a simple blend which has the capacity for great generaliza-
tion. Interpolation between L' and L* is thus the prototype for interpol-
ation between more general pairs of Banach spaces. This theme airs constantly
throughout the book.

The theory and applications of interpolation are as diverse as language
itself. Our goal is not a dictionary, or an encyclopedia, but instead a brief
biography of interpolation, with a beginning and an end, and (like inter-
polation itself) some substance in between.

The book should be accessible to anyone familiar with the fundamentals of
real analysis, measure theory, and functional analysis. The standard advanced
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Xiv Preface

undergraduate or beginning graduate courses in these disciplines should
suffice. The exposition is essentially self-contained.

We wish to thank Dr. Carl Riehm and McMaster University, without whose
support this project would not have begun, and the University of South
Carolina, which provides such a stimulating and exciting environment in
which to work. We are particularly indebted to Dr. Sherman Riemenschneider
and Mr. Natarajan Sivakumar of the University of Alberta, who suggested
many improvements and caught several errors. We thank them for their
generosity and their humor, which will someday surely be repaid. Our thanks
are due also to Department of Mathematics staff members Jane Squires, Jessie
Smith, Sue Darlington, and Dana Ward for their invaluable assistance in
preparing the manuscript. It is a pleasure to acknowledge the efficiency and
professionalism of our editors, Bill Sribney and Pascha Gerlinger of Harcourt
Brace Jovanovich. Above all, we thank our families for their patience and
support during the preparation of this work.

Columbia, South Carolina C. Bennett
R. Sharpley
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1 Banach Function Spaces

Although the Lebesgue spaces L (1 < p < o) play a primary role in many
areas of mathematical analysis, there are other classes of Banach spaces of
measurable functions that are also of interest. The larger classes of Orlicz
spaccs and Lorentz spaces, for example, are of intrinsic importance. There is a
considerable literature dealing with each of these classes. In this chapter,
however, we shall concentrate not on the differences between such classes but
instead on their similarities. This common ground provides the foundation for
the abstract theory of Banach function spaces.

Banach function spaces are Banach spaces of measurable functions in which
the norm is related to the underlying measure in an appropriate way. This
allows for a fruitful interplay between functional-analytic and measure-
theoretic techniques. The theory is further enriched by the presence of a
natural order structure on the function elements themselves, and so may be
subsumed in a more general treatment of Banach lattices, or Riesz spaces, as
they are sometimes called. For our purposes, however, this more general point
of view will be neither necessary nor desirable.

The Banach function space axioms are displayed in Section 1, where some
elementary properties are derived from them. The concept of the associate
space is introduced in Section 2 and this sets the scene for the discussion of
duality, reflexivity, and separability in Sections 3, 4, and 5.



2 1 Banach Function Spaces

The program follows the same lines as any standard development of the L?-
spaces. In fact, the reader may find it instructive to keep the L"-spaces in mind
as a model for the entire theory of Banach function spaces.

The reader may also find it useful to reflect on the motivation for the
particular choice of axioms. The literature shelters more than one axiomatic
system under the general umbrella of Banach function spaces. Some use
weaker versions of the Fatou property (property (P3) in Definition 1.1), while
others rely on a different class of distinguished “bounded” sets in the
underlying measure space (properties (P4), (P5)). For example, in a totally o-
finite measure space (R, u), one could select once and for all an increasing
sequence (R,):% ; of measurable subsets of finite measure whose union is all of
R. A measurable subset of R might then be declared “bounded” if it is
contained in some set R,. The approach we have adopted is simpler: the
“bounded” sets are just the sets of finite measure. The resulting theory is less
technical but also less general at this initial stage. There is, however, no real
loss of generality when we specialize to the rearrangement-invariant spaces in
the next chapter.

1. BANACH FUNCTION SPACES

Let (R, u) be a measure space, in the sense described above. Let .# * be the
cone of p-measurable functions on R whose values lie in [0,00]. The
characteristic function of a u-measurable subset E of R will be denoted by y.

Definition 1.1. Amapping p:.# " — [0,00] is called a Banach function norm
(or simply a function norm) if, for all f,g, f,, (n=1,2,3,...), in &, for all
constants a > 0, and for all y-measurable subsets E of R, the following
properties hold:

(P1) p(f)=0 < [f=0pae; plaf)=ap(f);
p(f +9) < p(f)+ pl9)
(P2) 0<g<fpae = plg)<p(f)
(P3) 0< fo1 fpae. = p(f)Tp(f)
(P4) p(E) <o = plyg) < 0
(PS) w(E) <0 = [, fdu< Cep(f)
for some constant Cg, 0 < Cz < o0, depending on E and p but independent

of f.

Among the simplest examples of Banach function norms are those
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associated with the Lebesgue spaces L” (1 < p < o). Let

1/p
{jfpd#} 5 (1<p< ),
plf)y=¢ ¥

ess sup f, (p = o),
R

fed*. (1.1)

Theorem 1.2. The Lebesgue functionals p,, (1 < p < o), are function norms.

Proof. The triangle inequality for p, is the classical Minkowski inequality.
The remaining parts of (P1) are obvious, as are (P2) and (P4). Property (P3)
follows from the monotone convergence theorem, and (P5) from Holder’s
inequality:if 1 <p < ooand1/p+ 1/p’ =1, then

1/p 1/p’
ifd# = ifxgd# < (J{f"@) (},[ i3 du) = Cep(f),

with Cz = p(E)"?". The cases p = | and p = oo are easier so their proofs are
omitted. ]

Let .# denote the collection of all extended scalar-valued (real or complex)
u-measurable functions on R and .4, the class of functions in .# that are finite
p-a.e. As usual, any two functions coinciding u-a.e. will be identified. The
natural vector space operations are well defined on .#,, (although not on all of
M), and when ., is given the topology of convergence in measure on sets of
finite measure it becomes a metrizable topological vector space (cf. Exercise 1).

Definition 1.3. Let p be a function norm. The collection X = X(p) of all
functions f in . for which p(| f|) < oo is called a Banach function space. For
each [ e X, define

1 /1lx = p(f1) (1.2)

Theorem 1.4. Let p be a function norm and let X = X(p) and ||-||yx be as in
Definition 1.3. Then under the natural vector space operations, (X,||-||x) is a
normed linear space for which the inclusions

ScXo M, (1.3)

hold, where S is the set of p-simple functions on R. In particular,if f, — fin X,
then f, — f in measure on sets of finite measure, and hence some subsequence
converges pointwise y-a.e. to f.



4 1 Banach Function Spaces

Proof. It follows from Definition 1.3 and property (P5) of Definition 1.1 that
every function in X is locally integrable and hence finite y-a.e. (because p is a-
finite). The set X therefore inherits the vector space operations from .#, and
then there is no difficulty in using (P1) and (1.2) to verify that (X,||-||y) is a
normed linear space. Property (P4) shows that X contains the characteristic
function of every set of finite measure and hence, by linearity, every u-simple
function. This establishes the set-theoretic inclusions in (1.3).

It remains to show that the inclusion map from X to .#, is continuous. Since
both spaces are metrizable it will suffice to show that every sequence
convergent in X is convergent also in A, (to the same limit, of course). But if
f, — fin X, then (1.2) shows that p(|f — f,]) >0asn— co. Let ¢ > 0 and let
E be any subset of R having finite measure. By property (P5),

plx € E:lf() — £ > o} < (111 — fld

1
= ;Czp(lf = Jul)s

which converges to 0 as n — oo since Cy is independent of n. This shows that
f,— f in measure on every set of finite measure or, what is the same thing,
f,— fin #,. A standard result in measure theory [Ro, p.92] now provides
the desired pointwise a.e.-convergent subsequence. ]

The Banach function spaces arising from the functionals p, in (1.1) are of
course the familiar Lebesgue spaces L? = LP(R, p):

R

I llee = (1.4)
ess RSUP|f ls (p = ).

1/p
(IIfl"tht) , (<p<wm)

The next result shows that one of the cornerstones of the L”-theory, namely
Fatou’s lemma, has a natural analogue in every Banach function space. Note
that the Fatou property (P3) plays a central role here.

Lemma 1.5. Let X = X(p) be a Banach function space and suppose f, € X,
(n=1,2,...).

(1) If 0< f,1f p-ae., then eikher f¢X and ||f,llxT o0, or feX and
1 fallx TS Mlx-



