

Semantic Web for the Working Ontologist

Effective Modeling in RDFS and OWL

实用语义网 RDFS与OWL高效建模 (英文版)

[美] Dean Allemang 著

TURING

图灵原版计算机科学系列

Semantic Web for the Working Ontologist

Effective Modeling in RDFS and OWL

实用语义网

RDFS与OWL高效建模 (英文版)

人民邮电出版社 北京

图书在版编目 (CIP) 数据

实用语义网: RDFS与OWL高效建模: 英文/(美) 阿利芒(Allemang, D.), (美) 亨德勒(Hendler, J.) 著. 一北京: 人民邮电出版社, 2009.2

(图灵原版计算机科学系列)

书名原文: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL, First Edition

ISBN 978-7-115-19384-1

I. 实… II. ①阿… ②亨… III. 语义网络 – 研究 – 英文 IV. TP18

中国版本图书馆CIP数据核字(2008)第196329号

内容提要

语义网的发展孕育着万维网及其应用的一场革命,作为语义网核心内容的语言——RDF和OWL,逐渐得到广泛的重视和应用。本书是语义网的人门教程,详细讲述语义网的核心内容的语言,包括语义网的概念、语义建模、RDF、RDF Schema、OWL基础等。

本书对于任何对语义网感兴趣的专业技术人员都是十分难得的参考书。

图灵原版计算机科学系列

实用语义网:RDFS与OWL高效建模(英文版)

- ◆ 著 [美] Dean Allemang James Hendler 责任编辑 杨海玲
- ◆ 人民邮电出版社出版发行 北京市崇文区夕照寺街14号 邮编 100061 电子函件 315@ptpress.com.cn 网址 http://www.ptpress.com.cn

北京顺义振华印刷厂印刷

◆ 开本・800×1000 1/16

印张: 21.5

字数: 413千字 2009年2月第1版

印数: 1-2000 册 2009年2月北京第1次印刷

著作权合同登记号 图字: 01-2008-5830号

ISBN 978-7-115-19384-1/TP

定价:59.00元

读者服务热线: (010) 88593802 印装质量热线: (010) 67129223 反盗版热线: (010) 67171154

About the Authors

Dean Allemang is the chief scientist at TopQuadrant, Inc.—the first company in the United States devoted to consulting, training, and products for the Semantic Web. He codeveloped (with Professor Hendler) TopQuadrant's successful Semantic Web training series, which he has been delivering on a regular basis since 2003.

He was the recipient of a National Science Foundation Graduate Fellowship and the President's 300th Commencement Award at the Ohio State University. Allemang has studied and worked extensively throughout Europe as a Marshall Scholar at Trinity College, Cambridge, from 1982 through 1984 and was the winner of the Swiss Technology Prize twice (1992 and 1996).

In 2004, he participated in an international review board for Digital Enterprise Research Institute—the world's largest Semantic Web research institute. He currently serves on the editorial board of the *Journal of Web Semantics* and has been the Industrial Applications chair of the International Semantic Web conference since 2003.

Jim Hendler is the Tetherless World Senior Constellation Chair at Rensselaer Polytechnic Institute where he has appointments in the Departments of Computer Science and the Cognitive Science. He also serves as the associate director of the Web Science Research Initiative headquartered at the Massachusetts Institute of Technology. Dr. Hendler has authored approximately 200 technical papers in the areas of artificial intelligence, Semantic Web, agent-based computing, and high-performance processing.

One of the inventors of the Semantic Web, he was the recipient of a 1995 Fulbright Foundation Fellowship, is a former member of the U.S. Air Force Science Advisory Board, and is a Fellow of the American Association for Artificial Intelligence and the British Computer Society. Dr. Hendler is also the former chief scientist at the Information Systems Office of the U.S. Defense Advanced Research Projects Agency (DARPA), was awarded a U.S. Air Force Exceptional Civilian Service Medal in 2002, and is a member of the World Wide Web Consortium's Semantic Web Coordination Group. He is the Editor-in-Chief of *IEEE Intelligent Systems* and is the first computer scientist to serve on the Board of Reviewing Editors for *Science*.

Preface

In 2003, when the World Wide Web Consortium was working toward the ratification of the Recommendations for the Semantic Web languages RDF, RDFS, and OWL, we realized that there was a need for an industrial-level introductory course in these technologies. The standards were technically sound, but, as is typically the case with standards documents, they were written with technical completeness in mind rather than education. We realized that for this technology to take off, people other than mathematicians and logicians would have to learn the basics of semantic modeling.

Toward that end, we started a collaboration to create a series of trainings aimed not at university students or technologists but at Web developers who were practitioners in some other field. In short, we needed to get the Semantic Web out of the hands of the logicians and Web technologists, whose job had been to build a consistent and robust infrastructure, and into the hands of the practitioners who were to build the Semantic Web. The Web didn't grow to the size it is today through the efforts of only HTML designers, nor would the Semantic Web grow as a result of only logicians' efforts.

After a year or so of offering training to a variety of audiences, we delivered a training course at the National Agriculture Library of the U.S. Department of Agriculture. Present for this training were a wide variety of practitioners in many fields, including health care, finance, engineering, national intelligence, and enterprise architecture. The unique synergy of these varied practitioners resulted in a dynamic four days of investigation into the power and subtlety of semantic modeling. Although the practitioners in the room were innovative and intelligent, we found that even for these early adopters, some of the new ways of thinking required for modeling in a World Wide Web context were too subtle to master after just a one-week course. One participant had registered for the course multiple times, insisting that something else "clicked" each time she went through the exercises.

This is when we realized that although the course was doing a good job of disseminating the information and skills for the Semantic Web, another, more archival resource was needed. We had to create something that students could work with on their own and could consult when they had questions. This was the point at which the idea of a book on modeling in the Semantic Web was conceived. We realized that the readership needed to include a wide variety of people from a number of fields, not just programmers or Web application developers but all the people from different fields who were struggling to understand how to use the new Web languages.

It was tempting at first to design this book to be the definitive statement on the Semantic Web vision, or "everything you ever wanted to know about OWL," including comparisons to program modeling languages such as UML, knowledge modeling languages, theories of inferencing and logic, details of the Web infrastructure (URIs and URLs), and the exact current status of all the developing standards (including SPARQL, GRDDL, RDFa, and the new OWL 1.1 effort). We realized, however, that not only would such a book be a superhuman undertaking, but it would also fail to serve our primary purpose of putting the tools of the Semantic Web into the hands of a generation of intelligent practitioners who could build real applications. For this reason, we concentrated on a particular essential skill for constructing the Semantic Web: building useful and reusable models in the World Wide Web setting.

Even within the realm of modeling, our early hope was to have something like a cookbook that would provide examples of just about any modeling situation one might encounter when getting started in the Semantic Web. Although we think we have, to some extent, achieved this goal, it became clear from the outset that in many cases the best modeling solution can be the topic of considerable detailed debate. As a case in point, the W3C Best Practices and Dissemination Working Group has developed a small number of advanced "design patterns" for Semantic Web modeling.

Many of these patterns entail several variants, each embodying a different philosophy or approach to modeling. For advanced cases such as these, we realized that we couldn't hope to provide a single, definitive answer to how these things should be modeled. So instead, our goal is to educate domain practitioners so that they can read and understand design patterns of this sort and have the intellectual tools to make considered decisions about which ones to use and how to adapt them. We wanted to focus on those trying to use RDF, RDFS, and OWL to accomplish specific tasks and model their own data and domains, rather than write a generic book on ontology development. Thus, we have focused on the "working ontologist" who was trying to create a domain model on the Semantic Web.

The design patterns we use in this book tend to be much simpler. Often a pattern consists of only a single statement but one that is especially helpful when used in a particular context. The value of the pattern isn't so much in the complexity of its realization but in the awareness of the sort of situation in which it can be used.

This "make it useful" philosophy also motivated the choice of the examples we use to illustrate these patterns in this book. There are a number of competing criteria for good example domains in a book of this sort. The examples must be understandable to a wide variety of audiences, fairly compelling, yet complex enough to reflect real modeling situations. The actual examples we have encountered in our customer modeling situations satisfy the last condition but either are too specialized—for example, modeling complex molecular biological data; or, in some cases, they are too business-sensitive—for example, modeling particular investment policies—to publish for a general audience.

We also had to struggle with a tension between the coherence of the examples. We had to decide between using the same example throughout the book

versus having stylistic variation and different examples, both so the prose didn't get too heavy with one topic, but also so the book didn't become one about how to model—for example, the life and works of William Shakespeare for the Semantic Web.

We addressed these competing constraints by introducing a fairly small number of example domains: William Shakespeare is used to illustrate some of the most basic capabilities of the Semantic Web. The tabular information about products and the manufacturing locations was inspired by the sample data provided with a popular database management package. Other examples come from domains we've worked with in the past or where there had been particular interest among our students. We hope the examples based on the roles of people in a workplace will be familiar to just about anyone who has worked in an office with more than one person, and that they highlight the capabilities of Semantic Web modeling when it comes to the different ways entities can be related to one another.

Some of the more involved examples are based on actual modeling challenges from fairly involved customer applications. For example, the ice cream example in Chapter 7 is based, believe it or not, on a workflow analysis example from a NASA application. The questionnaire is based on a number of customer examples for controlled data gathering, including sensitive intelligence gathering for a military application. In these cases, the domain has been changed to make the examples more entertaining and accessible to a general audience.

Finally, we have included a number of extended examples of Semantic Web modeling "in the wild," where we have found publicly available and accessible modeling projects for which there is no need to sanitize the models. These examples can include any number of anomalies or idiosyncrasies, which would be confusing as an introduction to modeling but as illustrations give a better picture about how these systems are being used on the World Wide Web. In accordance with the tenet that this book does not include everything we know about the Semantic Web, these examples are limited to the modeling issues that arise around the problem of distributing structured knowledge over the Web. Thus, the treatment focuses on how information is modeled for reuse and robustness in a distributed environment.

By combining these different example sources, we hope we have struck a happy balance among all the competing constraints and managed to include a fairly entertaining but comprehensive set of examples that can guide the reader through the various capabilities of the Semantic Web modeling languages.

This book provides many technical terms that we introduce in a somewhat informal way. Although there have been many volumes written that debate the formal meaning of words like *inference*, *representation*, and even *meaning*, we have chosen to stick to a relatively informal and operational use of the terms. We feel this is more appropriate to the needs of the ontology designer or

4 Preface

application developer for whom this book was written. We apologize to those philosophers and formalists who may be offended by our casual use of such important concepts.

We often find that when people hear we are writing a new Semantic Web modeling book, their first question is, "Will it have examples?" For this book, the answer is an emphatic "Yes!" Even with a wide variety of examples, however, it is easy to keep thinking "inside the box" and to focus too heavily on the details of the examples themselves. We hope you will use the examples as they were intended: for illustration and education. But you should also consider how the examples could be changed, adapted, or retargeted to model something in your personal domain. In the Semantic Web, Anyone can say Anything about Any topic. Explore the freedom.

ACKNOWLEDGMENTS

Of course, no book gets written without a lot of input and influence from others. We would like to thank a number of professional colleagues, including Bijan Parsia and Jennifer Golbeck, and the students of the University of Maryland MINDSWAP project, who discussed many of the ideas in this book with us. We thank Irene Polikoff, Ralph Hodgson, and Robert Coyne from TopQuadrant Inc., who were supportive of this writing effort, and our many colleagues in the Semantic Web community, including Tim Berners-Lee, whose vision motivated both of us, and Ora Lassila, Bernardo Cuenca-Grau, Xavier Lopez, and Guus Schreiber, who gave us feedback on what became the choice of features for RDF-PLUS. We are also grateful to the many colleagues who've helped us as we've learned and taught about Semantic Web technologies.

We would also especially like to thank the reviewers who helped us improve the material in the book: John Bresnick, Ted Slater, and Susie Stephens all gave us many helpful comments on the material, and Mike Uschold of Boeing made a heroic effort in reviewing every chapter, sometimes more than once, and worked hard to help us make this book the best it could be. We didn't take all of his suggestions, but those we did have greatly improved the quality of the material, and we thank him profusely for his time and efforts.

We also want to thank Denise Penrose, who talked us into publishing with Elsevier and whose personal oversight helped make sure the book actually got done on time. We also thank Mary James, Diane Cerra, and Marilyn Rash, who helped in the book's editing and production. We couldn't have done it without the help of all these people.

We also thank you, our readers. We've enjoyed writing this book, and we hope you'll find it not only very readable but also very useful in your World Wide Web endeavors. We wish you all the best of luck.

Contents

CHADTED 1	Mohat Ia the Comentia Moh?	
CHAPTER 1	What Is the Semantic Web?	1
	What Is a Web?]
	Smart Web, Dumb Web	2
	Smart Web Applications	3
	A Connected Web Is a Smarter Web	4
	Semantic Data	5
	A Distributed Web of Data	6
	Features of a Semantic Web	7
	What about the Round-Worlders?	9
	To Each Their Own	10
	There's Always One More	11
	Summary	12
	Fundamental Concepts	13
CHAPTER 2	Semantic Modeling	15
	Modeling for Human Communication	17
	Explanation and Prediction	19
	Mediating Variability	21
	Variation and Classes	22
	Variation and Layers	23
	Expressivity in Modeling	26
	Summary	28
	Fundamental Concepts	29
CHAPTER 3	RDF—The Basis of the Semantic Web	31
	Distributing Data Across the Web	32
	Merging Data from Multiple Sources	36
	Namespaces, URIs, and Identity	37
	Expressing URIs in Print	40
	Standard Namespaces	43
	Identifiers in the RDF Namespace	44
	Challenge: RDF and Tabular Data	45
	Higher-Order Relationships	49
	Alternatives for Serialization	51
	N.Triples	51

	Notation 3 RDF (N3)	52
	RDF/XML	53
	Blank Nodes	54
	Ordered Information in RDF	56
	Summary	56
	Fundamental Concepts	5 7
CHAPTER 4	Semantic Web Application Architecture	59
	RDF Parser/Serializer	60
	Other Data Sources—Converters and Scrapers	61
	RDF Store	64
	RDF Data Standards and Interoperability of RDF Stores	66
	RDF Query Engines and SPARQL	66
	Comparison to Relational Queries	72
	Application Code	73
	RDF-Backed Web Portals	75
	Data Federation	75
	Summary	76
	Fundamental Concepts	77
CHAPTER 5	RDF and Inferencing	79
	Inference in the Semantic Web	80
	Virtues of Inference-Based Semantics	82
	Where are the Smarts?	83
	Asserted Triples versus Inferred Triples	85
	When Does Inferencing Happen?	87
	Inferencing as Glue	88
	Summary	89
	Fundamental Concepts	90
CHAPTER 6	RDF Schema	91
	Schema Languages and Their Functions	91
	What Does It Mean? Semantics as Inference	93
	The RDF Schema Language	95
	Relationship Propagation through	
	rdfs:subPropertyOf	95
	Typing Data by Usage—rdfs:domain	00
	and rdfs:range	98
	Combination of Domain and Range with	00
	rdfs:subClassOf	99 102
	RDFS Modeling Combinations and Patterns	102 102
	Set Intersection	102

	Property Intersection	104
	Set Union	105
	Property Union	106
	Property Transfer	106
	Challenges	108
	Term Reconciliation	108
	Instance-Level Data Integration	110
	Readable Labels with rdfs:label	110
	Data Typing Based on Use	111
	Filtering Undefined Data	115
	RDFS and Knowledge Discovery	115
	Modeling with Domains and Ranges	116
	Multiple Domains/Ranges	116
	Nonmodeling Properties in RDFS	120
	Cross-Referencing Files: rdfs:seeAlso	120
	Organizing Vocabularies: rdfs:isDefinedBy	121
	Model Documentation: rdfs:comment	121
	Summary	121
	Fundamental Concepts	122
CHAPTER 7	RDFS-Plus	123
	Inverse	124
	Challenge: Integrating Data that Do Not Want	
	to Be Integrated	125
	Challenge: Using the Modeling Language to	
	Extend the Modeling Language	127
	Challenge: The Marriage of Shakespeare	129
	Symmetric Properties	129
	Using OWL to Extend OWL	130
	Transitivity	131
	Challenge: Relating Parents to Ancestors	132
	Challenge: Layers of Relationships	133
	Managing Networks of Dependencies	134
	Equivalence	139
	Equivalent Classes	141
	Equivalent Properties	142
	Same Individuals	143
	Challenge: Merging Data from Different Databases	146
	Computing Sameness—Functional Properties	149
	Functional Properties	150
	Inverse Functional Properties	151
	Combining Functional and Inverse	
	Functional Properties	154

4 Contents

	A Few More Constructs	155
	Summary	156
	Fundamental Concepts	157
CHAPTER	8 Using RDFS-Plus in the Wild	159
	SKOS	159
	Semantic Relations in SKOS	163
	Meaning of Semantic Relations	165
	Special Purpose Inference	166
	Published Subject Indicators	168
	SKOS in Action	168
	FOAF	169
	People and Agents	170
	Names in FOAF	171
	Nicknames and Online Names	171
	Online Persona	172
	Groups of People	173
	Things People Make and Do	174
	Identity in FOAF	175
	It's Not What You Know, It's Who You Know	176
	Summary	177
	Fundamental Concepts	178
CHAPTER	9 Basic OWL	179
	Restrictions	179
	Example: Questions and Answers	180
	Adding "Restrictions"	183
	Kinds of Restrictions	184
	Challenge Problems	196
	Challenge: Local Restriction of Ranges	196
	Challenge: Filtering Data Based on Explicit Type	198
	Challenge: Relationship Transfer in SKOS	202
	Relationship Transfer in FOAF	204
	Alternative Descriptions of Restrictions	209
	Summary	210
	Fundamental Concepts	211
CHAPTER	10 Counting and Sets in OWL	213
	Unions and Intersections	214
	Closing the World	216
	Enumerating Sets with owl:oneOf	216
	Differentiating Individuals with	
	owl:differentFrom	218

	Differentiating Multiple Individuals	219
	Cardinality	222
	Small Cardinality Limits	225
	Set Complement	226
	Disjoint Sets	228
	Prerequisites Revisited	231
	No Prerequisites	232
	Counting Prerequisites	233
	Guarantees of Existence	234
	Contradictions	235
	Unsatisfiable Classes	237
	Propagation of Unsatisfiable Classes	237
	Inferring Class Relationships	238
	Reasoning with Individuals and with Classes	243
	Summary	244
	Fundamental Concepts	245
CHAPTER 11	Using OWL in the Wild	247
	The Federal Enterprise Architecture Reference	
	Model Ontology	248
	Reference Models and Composability	249
	Resolving Ambiguity in the Model: Sets	
	versus Individuals	251
	Constraints between Models	253
	OWL and Composition	255
	owl:Ontology	255
	owl:imports	256
	Advantages of the Modeling Approach	257
	The National Cancer Institute Ontology	258
	Requirements of the NCI Ontology	259
	Upper-Level Classes	261
	Describing Classes in the NCI Ontology	266
	Instance-Level Inferencing in the NCI Ontology	267
	Summary	269
	Fundamental Concepts	270
CHAPTER 12	2 Good and Bad Modeling Practices	271
	Getting Started	271
	Know What You Want	272
	Inference Is Key	273
	Modeling for Reuse	274
	Insightful Names versus Wishful Names	274

6 Contents

Keeping Track of Classes and Ind	ividuals 275
Model Testing	277
Common Modeling Errors	277
Rampant Classism (Antipattern)	277
Exclusivity (Antipattern)	282
Objectification (Antipattern)	285
Managing Identifiers for Classes (
Creeping Conceptualization (Anti	pattern) 289
Summary	290
Fundamental Concepts	291
CHAPTER 13 OWL Levels and Logic	293
OWL Dialects and Modeling Philoso	phy 294
Provable Models	294
Executable Models	296
OWL Full versus OWL DL	297
Class/Individual Separation	298
InverseFunctional Datatypes	298
OWL Lite	299
Other Subsets of OWL	299
Beyond OWL 1.0	300
Metamodeling	300
Multipart Properties	301
Qualified Cardinality	302
Multiple Inverse Functional Prop	erties 302
Rules	303
Summary	304
Fundamental Concepts	304
CHAPTER 14 Conclusions	307
APPENDIX Frequently Asked Questions	313
Further Reading	31°
Index	32:

What Is the Semantic Web?

This book is about something we call the Semantic Web. From the name, you can probably guess that it is related somehow to the famous World Wide Web (WWW) and that it has something to do with semantics. Semantics, in turn, has to do with understanding the nature of meaning, but even the word semantics has a number of meanings. In what sense are we using the word semantics? And how can it be applied to the Web?

This book is also about a working ontologist. That is, the aim of this book is not to motivate or pitch the Semantic Web but to provide the tools necessary for working with it. Or, perhaps more accurately, the World Wide Web Consortium (W3C) has provided these tools in the forms of standard Semantic Web languages, complete with abstract syntax, model-based semantics, reference implementations, test cases, and so forth. But these are like a craftsman's tools: In the hands of a novice, they can produce clumsy, ugly, barely functional output, but in the hands of a skilled craftsman, they can produce works of utility, beauty, and durability. It is our aim in this book to describe the craft of building Semantic Web systems. We go beyond coverage of the fundamental tools to show how they can be used together to create semantic models, sometimes called *ontologies*, that are understandable, useful, durable, and perhaps even beautiful.

WHAT IS A WEB?

The idea of a web of information was once a technical idea accessible only to highly trained, elite information professionals: IT administrators, librarians, information architects, and the like. Since the widespread adoption of the WWW, it is now common to expect just about anyone to be familiar with the idea of a web of information that is shared around the world. Contributions to this web come from every source, and every topic you can think of is covered.

Essential to the notion of the Web is the idea of an open community: Anyone can contribute their ideas to the whole, for anyone to see. It is this openness that has resulted in the astonishing comprehensiveness of topics covered by

the Web. An information "web" is an organic entity that grows from the interests and energy of the community that supports it. As such, it is a hodgepodge of different analyses, presentations, and summaries of any topic that suits the fancy of anyone with the energy to publish a webpage. Even as a hodgepodge, the Web is pretty useful. Anyone with the patience and savvy to dig through it can find support for just about any inquiry that interests them. But the Web often feels like it is "a mile wide but an inch deep." How can we build a more integrated, consistent, deep Web experience?

SMART WEB, DUMB WEB

Suppose you consult a Webpage, looking for a major national park, and you find a list of hotels that have branches in the vicinity of the park. In that list you see that Mongotel, one of the well-known hotel chains, has a branch there. Since you have a Mongotel rewards card, you decide to book your room there. So you click on the Mongotel website and search for the hotel's location. To your surprise, you can't find a Mongotel branch at the national park. What is going on here? "That's so dumb," you tell your browsing friends. "If they list Mongotel on the national park website, shouldn't they list the national park on Mongotel's website?"

Suppose you are planning to attend a conference in a far-off city. The conference website lists the venue where the sessions will take place. You go to the website of your preferred hotel chain and find a few hotels in the same vicinity. "Which hotel in my chain is nearest to the conference?" you wonder. "And just how far off is it?" There is no shortage of websites that can compute these distances once you give them the addresses of the venue and your own hotel. So you spend some time copying and pasting the addresses from one page to the next and noting the distances. You think to yourself, "Why should I be the one to copy this information from one page to another? Why do I have to be the one to copy and paste all this information into a single map?

Suppose you are investigating our solar system, and you find a comprehensive website about objects in the solar system: Stars (well, there's just one of those), planets, moons, asteroids, and comets are all described there. Each object has its own webpage, with photos and essential information (mass, albedo, distance from the sun, shape, size, what object it revolves around, period of rotation, period of revolution, etc.). At the head of the page is the object category: planet, moon, asteroid, comet. Another page includes interesting lists of objects: the moons of Jupiter, the named objects in the asteroid belt, the planets that revolve around the sun. This last page has the nine familiar planets, each linked to its own data page.

One day, you read in the newspaper that the International Astronomical Union (IAU) has decided that Pluto, which up until 2006 was considered a planet, should be considered a member of a new category called a "dwarf

planet"! You rush to the Pluto page, and see that indeed, the update has been made: Pluto is listed as a dwarf planet! But when you go back to the "Solar Planets" page, you still see nine planets listed under the heading "Planet." Pluto is still there! "That's dumb." Then you say to yourself, "Why didn't they update the webpages consistently?"

What do these examples have in common? Each of them has an apparent representation of data, whose presentation to the end user (the person operating the Web browser) seems "dumb." What do we mean by "dumb"? In this case, "dumb" means inconsistent, out of synch, and disconnected. What would it take to make the Web experience seem smarter? Do we need smarter applications or a smarter Web infrastructure?

Smart Web Applications

The Web is full of intelligent applications, with new innovations coming every day. Ideas that once seemed futuristic are now commonplace; search engines make matches that seem deep and intuitive; commerce sites make smart recommendations personalized in uncanny ways to your own purchasing patterns; mapping sites include detailed information about world geography, and they can plan routes and measure distances. The sky is the limit for the technologies a website can draw on. Every information technology under the sun can be used in a website, and many of them are. New sites with new capabilities come on the scene on a regular basis.

But what is the role of the Web infrastructure in making these applications "smart"? It is tempting to make the infrastructure of the Web smart enough to encompass all of these technologies and more. The smarter the infrastructure, the smarter the Web's performance, right? But it isn't practical, or even possible, for the Web infrastructure to provide specific support for all, or even any, of the technologies that we might want to use on the Web. Smart behavior in the Web comes from smart applications on the Web, not from the infrastructure.

So what role does the infrastructure play in making the Web smart? Is there a role at all? We have smart applications on the Web, so why are we even talking about enhancing the Web infrastructure to make a smarter Web if the smarts aren't in the infrastructure?

The reason we are improving the Web infrastructure is to allow smart applications to perform to their potential. Even the most insightful and intelligent application is only as smart as the data that is available to it. Inconsistent or contradictory input will still result in confusing, disconnected, "dumb" results, even from very smart applications. The challenge for the design of the Semantic Web is not to make a web infrastructure that is as smart as possible; it is to make an infrastructure that is most appropriate to the job of integrating information on the Web.

The Semantic Web doesn't make data smart because smart data isn't what the Semantic Web needs. The Semantic Web just needs to get the right data