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JREFACE

"t his book intreduces the numerical solution of boundary value problems
“y variational methods. Special emphasis is placed on the finiie element
1 collocation methods. We have deliberately attempted to present the
v:ajority of the material in a very elementary manner, to make it accessible

. serious students of engineering and mathematics who have no more
rmathematical background than elementary applied linear algebra -and very
basic advanced calculus or their equivalents. Hilbert space and more
abstract functional analytic concepts have been introduced only when
aeeded to put the theory on a firm mathematical footing or to unify a body
of material and point out new directions of thinking about boundary value
nroblems. Some will undoubtedly find this point of view distasteful.
However, the approach seems to be in keeping with the development of a
vast engineering literature on the subject. Engineers are unquestionably the
pioneers in the development and research on finite elements, and a large
number of their early successes were produced without benefit of abstract
functional analysis; basic calculus and a strong physical sense of what will
work were their only tools. (This is not to say that powerful mathematics is
unnecessary to establish further successes and point out serious failures.)
We have tried to reach the audience described, to introduce them gradu-
ally to the mathematician’s way of thinking about such problems. In this
sense, the book is no more than an introduction to more advanced works,
as well as an access route to the enormous literature and great number of
open research questions in the area.

A secondary direction we have tried to point out, hopefully with success,
is the powerful application of approximation theoretic notions to very
applied problems. It seems unfortunate that so few approximation theorists
are interested in the dynamic application of their art to very difficult and
important physical problems. We hope that this is a changing situation and
.i:at more of these individuals will turn their attentions and talents to some

¢ the numerical problems facing the engineer. Although our emphasis is
mlmh as 2 fire approximating tool, it is clear that splines, as we know
SRV ‘ 5 T v all preblems of numerical approximation. We

v



¥ PREFACE
feel that many f{ruitful new ideas are in the winds and that this is an
exciting time for approximation theor&. Perhaps the splines theorists, with
their penchant for functional catholicism, will claim these stars of the
unborn. Be that as it may, it is a fruitful era.

No attempt has been made to present the material from a physical
viewpoint. This is recognized as a serious omission, since the wqmb or
birthplace of the Rayleigh-Ritz-Galerkin method is the idea of minimizing
the energies of physical systems over finite dimensional approximating
spaces. Moreover, this outlook is still the most natural physical way of
approaching many applied problems. Many excellent mathematics and
physics texts take precisely this point of view, however; thus perhaps we
can be forgiven our transgressions.

The book has been successfully used over a 4-year period to teach mixed
audiences of first-year graduate students in engineering and mathematics,
as well as industrial scientists. It has also been used for short expository
lectures here and overseas. By giving reading assignments and covering
only the pragmatic high points of Chapters 1 through 5 we have been able
to go through the entire text in one quarter. This has entailed an attempt to
present sufficient proofs to keep the mathematicians happy and to delete
sufficient proofs to keep the engineers from becoming miserable. An
integral part of the course has always included numerous large- and
small-scale computational exercises and a lot of programming.

The author is grateful for help and encouragement from a number of
individuals. Among these are Bob Rice and Dr. Ron Guenther of the
Marathon Oil Corporation and Oregon State University, who thought a
book on the subject that could be read by ordinary mortals would be
advisable; Drs. Bob Russell and Neall Strand, true friends in need, who
proofread the entire original version of th¢ manuscript; my department
chairman Dr. E. R. Deal, for providing understanding and typing assis-
tance; Professor C. Jacobsz of the Council for Scientific and Industrial
Research (CSIR) of the Republic of South Africa and to the CSIR for
providing an appointment as a senior research scientist and bringing me to
South Africa to deliver an expository lecture series and to work on my
book and my research: to Professor Karl Nickel and the Technical
University of Karlsruhe for bringing me to Germany to lecture from and
work on the book and my research; to Dr. Erik Thompson of the Civil
Engineering Department at Colorado State University for many helpful
discussions and for introducing me to the engineering literature; to my
students Dr. Tom Dence, Tim Simpson, Don De Gryse, A. Sato, and C.
Chen, who pointed out errors in many portions of the manuscript, as did
Dr. Don Jones of the University of Michigan; and finally to my many
other students here and overseas whose interest and intolerance for obscur-
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ing simple mathematical concepts with unnecessary abstract mathematical
tools has tempered my outlook. The author cannot ignore her debt to the
influence of Dr. 1. J. Schoenberg of the Mathematics Research Center,
University of Wisconsin, whose personal kindness and beautiful lectures
first stimulated the author’s interest in splines, and of Professor Mihklin of
the USSR, whom the author has never met but whose mathematical
outlook has obviously been most influential. Final thanks are also due to a
sequence (rather long, but thankfully finite) of impeccable typists who
have worked on various phases of the manuscript. Among these are Mrs,
Evelyn Anderson and Mrs. Beth Murphy of CSU and Mrs. S. Van Wyk of
the CSIR. It is hoped that there are not too many serious mathematical
errors; for any that may appear, the author assumes full responsibility.

PADDY PRENTER
Pretoria
Karlsruhe
Fort Collins

March 1975
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INTRODUCTORY IDEAS

1.1 A SIMPLY STATED PROBLEM

1
1.2 LINEAR SPACES 2
1.3 NORMED LINEAR SPACES 9
1.4 THE SPACE L,[a,b) 11
1.5 BASIS FOR A LINEAR SPACE 15
1.6 APPROXIMATING FROM FINITE DIMENSIONAL SUBSPACES 19

1.1 A SIMPLY STATED PROBLEM

The need for good techniques for the approximation of functions arises in
many settings; one of these is the numerical solution of differential
equations. For example, suppose you are given the differential equation

%H‘m% +b(Ox()=f(1), a<i<b )

subject to the boundary conditions
x(a)=a and x(b)=38,

where a and B are constant and a(?), b(¢), and f(¢) are functions of ¢
defined on the interval [a,b]. Moreover, suppose you know that this
equation, subject to the boundary conditions, has a unique solution x(r)
which you would like to find. Our first problem then is

PROBLEM 1

How do we find x()?
As those who have worked to any extent in ordinary differential equa-
tions know, the answer to this query is decidedly gloomy. In particular
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Answer. For most choices of a(#), b(r), and f(r) we cannot find x(r)
exactly.

This being the case, we compromise. Since we cannot find x(r) exactly, we
can try to find it approximately. This leads us to a new problem.
PROBLEM 2

How do we find a good approximation X(7) to the solution x(¢) of our
differential equation?

This problem is far more tractable, and there are many ways of answering
it. All possible solutions depend in some way on the answer to yet another
problem.

PROBLEM 3

Given a functién'x(t), what kind of functions X(#) make good approxima-
tions to x(f)? ’

and to the companion problems

PROBLEM 4
What is meant by a good approximation?

. and

PROBLEM §

How does one compute a good approx1matnon X(?) to a given function

Providing some answers to these simple questions and their two-
dimensional analogs is precisely what this book .is all about. Since linear
spaces, subspaces, norms, and basis are notions fundamental to all we do in
the sequel, we start with a mminor digression to define these entities.

1.2 LINEAR SPACES

A real linear space X is simply a set of mathematical objects called vectors
which add according to the usual laws of arithmetic and can be multiplied
by real numbers in accord with the usual laws of arithmetic. Specifically to
qualify as a real linear space, elements of X must satisfy the following
conditions or axioms.
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For all x, y, and z, in X and for all real numbers a and B, ax is in X,
x+y is in X, x+y=y+x, (x+y)+z=x+(y+2), l'x=x, (a+B)x
= ax + fx, a(Bx)=(aB)x, and a(x+y)=ax+ ay. There exists a zero
vector @ in X with the property that x + @ = x for all x. Finally, for each
x there is a unique vector —x, called the inverse of x, such that
—x+x=0.

If all these axioms are satisfied when multiplication is multiplication by
complex numbers, we say X is a complex linear space. We vsually deal with
the real linear spaces.

Examples abound. Among these are the set E? of vectors in the plane
with addition defined as coordinatewise addition and the set Cla,b] of
functions f(#) continuous on the closed interval [a,b]. In each case we must
first define addition and scalar multiplication.

EXAMPLE | THE REAL PLANE E?
The set X = E? is simply the set

E?={(x,,x,;): x, and x, are real numbers}

of all ordered pairs of real numbers or vectors in a plane. Addition is coordinate-
wise addition, and multiplication is coordinatewise multiplication. In particular,
given a real number a and vectors x =(x,,x,) and y=(y,,y,), we define
‘ x+y=(x,+ypx3+y3)
ax = (ax;,ax,).

The reader can easily verify that all the axioms of a linear space are satisfied where
® =(0,0) is the zero vector (see Figure 1.1).

The real linear space C[a,b] is much more interesting.

EXAMPLE 2 THE SPACE C{a,b]

The space Cla,b] is simply the set of ali functions continuous on [a,b]. To define
addition and scalar multiplication, let « be any real number and let f(7) and g(¢) be

two continuous functions from C[a,b}. We define f+ g and of in the usual way.
That is,

(f+)()=f(N+g(), a<i<b
and

(Y D)=af(1), a<t<b.
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Figure 1.1 Addition of vectors in the plane E2.

Noting that the sum of any two continuous functions is a continuous function and
that a constant times a continuous function is again continuous, it is easy to verify
that C[a,b] forms a real linear space. The zero vector of this space is the function
that vanishes identically on the interval [a,b].

A space to which we shall take frequent recourse is

EXAMPLE 3 P,[a,b], POLYNOMIALS OF DEGREE 7.

. A real polynomial p(f) of exact degree n or less in one variable ¢ is a function
p(D)=at"+a, 1" '+--- +at+ag
where ag,4,,...,a, are given real numbers and ¢ is a real variable. The polynomial

p() is said to have exact degree n, if and only if a,50. Thus 27+5¢—1 is of
degree 4 but is of exact degree 3. Let

)
n .« .. . 1
P,[a,b]= a,t"+ +a;t+ay,  eachg; is a real constant _
andae<t<b

Thus P,[a,b] is the set of all polynomials of exact degree n or less, defined on the
interval [a,b]. Of course adding two polynomials of degree n or less produces: a
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notynomial of cocree a2 or less, whereas muliiplying a polynomial of degree n or
iess by a constant gives a polynomial of degree n or less. Knowing this, it is easily
checked that P,[a,b] is a real linear space. The zero in this space is again the zero
function, which is the same as the zero polynomial. Note too that since every
polynomial is continuous, P,[a,b]C C[a,b] (read P,[a,b] is a subset of C[a,b]).

We are interested in special subsets of linear spaces, which are known as
subspaces. A subset M of a linear space X is called a linear subspace (or
simply a subspace) of X if

M is a subset of X and for each x and y in M and for any pair of scalars a
and B, ax+ By belongs to M.

For example, a real line passing through the origin is a linear subspace of
the plane E2. Also, the set P,[a,b] is a subspace of C[a,b]. We use these
concepts repeatedly in the sequel.

EXERCISES

1. Prove that C[a,b] is a linear space.

2. Let P.C[a,b] denote the set of all functions that are piecewise con-
tinuous on [a,b]. In particular, a function f(7) belongs to P.C[a,b] if
and only if it has at most a finite number of discontinuities on [a,b]
and [%] f(O)dt < 0. Is P.C[a,b] a linear space? Prove your answer. If
f€P.Cla,b), does f(1)eP.C[a,b)? Why? If f(¢) is a simple jump
function, such as

0 when a<i< b—a

A= b_n 2
1 when 3 <t<b,

does either f(¢) ny’(t) belong to C|[a,b]? Explain.

3. Let X={(xgyo)+(x,y): x and y are real and x, and y, are constants}.
Is X a linear subspace of E*? Explain.

4. Let X=P.C?[a,b]={f(t): f*" V€ Cla,b] and fPeP.Cla,b]}. Is X a
linear space? Why? If f € X, does the fundamental theorem of calculus
hold? In particular, does

Jomn =100 = [ 1) ds

for all £,i, in {a,b]? Explain.
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1.3 NORMED LINEAR SPACES .

Actually, we are interested in more than just linear spaces. We want hneat
spaces in which we can assign a notion of length || x|| to each vector x in X.
Such linear spaces are known as normed linear spaces, and the real number
llx]| is referred to as the norm of x. In particular, a norm is a real valued
function defined on a linear space X having the following properties for
each real number a and each pair of vectors x and y from X:

1. ||x|| >0 unless x=0
2. |lax||=|af-||x|
3 lx+x) <lixil +Ix]l (trlangle inequality).

The reader can check that these properties of a norm do coincide with
usual geometric properties of length. Each of the linear spaces we have
cited in our examples is easily made a normed linear space through an
appropriate choice for || ||. For example, if X=E 2, the usual choice for the
length or :.orm || ||, of a vector x=(x,,x,) in the real plane is

,/ 2, .2
Ixjla=Vxi+x3.

But there are many other choices available. For example, the function || ||,
defined by
[l = ;] + | x)]

is a norm as is the function || ||, defined by

[l oo = max {x, |x.]}-

To prove that each of these function is a norm, you must verify that each
one satisfies each of the conditions 1, 2, and 3 required of a norm. For
example, to see that || ||, satisfies condition 1, note that |l x|[,=0 implies
|x,]+ |x,=0. But this is possible if and only if x;=x,=0. Thus (|x||‘ =0 if
and only if x=(0,0), the zero vector. Moreover, since [|x||, is clearly
nonnegative for all x, we see that condition 1 is satisfied. Conditions 2 and
3 follow readily from elementary properties of absolute values of real
aumbers.

We are especially interested in the Tchebycheff or uniform norm on the
wpace Cla,b).

“EFINITION TCHEBYCHEFF NORM
iet f(1) € Cla,b}. The real-valued function || |j definec
LAl= max | £(2)]
G ikh
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is known as the Tchebycheff norm of f.

One must, of con.~ prove that this function actually 1s a norm. This is
easily accomplished because of elementary properties of absolute value of
real numbers. In particular, | f|| >0, since | f(#)| > O for all ¢ in [a,b]. Also
I f1l=0 only if | f(#)]=0 for all ¢ in [a,b). Thus || f|| >0 unless f(£)=0 on
[a,b]. Moreover, {af(?)|=|a|-] f(?)] implies

 max |af()]= max la|-|f()]=la| max, |f(2)i= a1l F1I.

Thus 1 and 2 are clearly true. Condition 3 follows from the triangle
inequality | f(r)+ g(r)| <|f(¢)|+|g(?)| for absolute values of real numbers.
Thus the Tchebycheff norm is indeed a norm.

A second norm on C[a,b] which is also very important to us is the
so-called L, norm || ||5. In particular

DEFINITION L, NORM
Let f(f) € C|a,b}. The real valued function || ||, defined by

nﬂb=VLﬁﬂofw

is known as the L, norm of f.
Verification that || ||, is a norm on C{a,b] is left as an exercise (see
Exercise 2).

Defining a norm on a linear space X introduces the companion notion
of the distance ||x—y|| between two points x-and y belonging to X. For
example, if X=E? x=(1,3) and y =(~2,4), then

Ix=yl= V9j—l =V10
Ix=ylli=3+1=4
llx =yl =max{3,1}=3.

On the other hand, if X = C{a,b] with the Tchebycheff norm, and f(t) and
g(?) are any two functions belonging to X,

{1 f—zgll= atgﬁgblf(t) - g(t)l-
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To take a specific case, let f(f)=cosnt, g(f)=1*> and X = C|0,1). Then

If-gll=2
WA=1f-0l=1
gll=Ilg—0ll=1

(see Figure 1.2).

Given a continuous function f(¢) from Cla,b], it is helpful to consider
the set of all functions g(f) from Cla,b] for which ||f—g||<e. Such
collections of functions, known as e-neighborhoods of f, are nice things-—
we can draw pictures of them. Suppose, for example, f(#)=sin2¢+2, where
0<t<m and X=C[0,7]. Then {g€C[0,7]:|sin2t+2—g||<e} is the
family of all continuous functions g(¢) from C [0, 7] which thread through a
tube of width 2¢, symmetric about the graph of sin 2742 (see Figure 1.3).
It is clear that || f— gl <e if and only if the graph of g(¢) threads through
the shaded region about the graph of f(r). If g(z) were a function
approximating f(¢) and | f—gll <, it appears g would be a good
approximation to f if € were small. We borrow this simple geometry to give
an initial definition of a good approximation.

DEFINITION

Let f& Cla,b] with the Tchebycheff norm. A function g belonging to
Cla,b] is a good approximation to f provided || f— g|| < e for a sufficiently
small e. :

In some situations this definition may not be a sufficient measure of
goodness of approximation. To see this, consider the function f(1)
=}ecosdmt on the interval {0,1], where € is a very small constant. Then
the function g(#)=0 on [0,1] (the zero vector in C[0,1]) is a “good
approximation” to f by our definition, since

€ €
I/~ gll= jmax, [ cosdnt| =3 <

However, note that y'(1)=0, and f'(¢1)=(~4me/2)sindnt. Thus || f —g’'||
=||f)|=2me. Similarly ||f"~g"||=8x"%, | f""—g"|=327% f®-g®|
=(4m)"%/2, and so forth. Thus if you require a “good approximation” g to
a given function f to be one that makes each of the quantities || f~g]|,
N =g, | f™— g™ small, the definition just given simply will not do,
since (47)"%/2 could be quite a large number even though € was quite a
small number. In this case, the way out of the difficulty is to retain the
essential character of the definition of a good approximation, namely.
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14 - (1, 1)

Naf

4 L (1,-1)

Figure 1.2 Dotted line: g(#)= ¢%; solid line: f(#)=cost. 11 f—gll=2. Graph of f and g.

o
Nl -
B

Figure 1.3  Graph of a “tube” of width 2e symmetric about sin27+2.

l| f— gll small, but change the linear space and the norm. For the example
we have cited. you could take X = C"[a,b], the space of n times con-
tinuously differentiable functions defined on [a,b]. For each f& C"[a,b]
define the morm || ||, of f as

e R VA RN T WA

You must, of course, check that this function really is a norm and that
C"[a.b] with addition and scalar multiplication defined as in C{a.b] really



