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Foreword o

_ On 2 and 3 October, 1959, the Electronics Group of The Institute of Physics

~helda confei“encc on “ Noise in Electronic Devices ”* at the Services Elec-
tronics Research Laboratory, Baldock, Hertfordshue.

The papers collected here are based on material presented at the
confcrence .

The contents vary from a concise yet complete account of noise
phenomena, to some new considerations of noise in valves, and cover various

" particular electronic devices in between. : !

It is hoped that the text will be of use to students and research workcrs, ‘

both as an introductory text and posslbly as a work of refcrencc

¥

C. A Hogarth
Hon. Secretan, Elcctronws §Group

London
July, 1960.
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' The Physical Basis of Noise
' By F. J. Hvoe, M.Sc., AM.LE.E..
- University College of North Wales, Bangor

1. INTRODUCTION

"*“Noise ” in relation to electron devices and associated equlpmcnts incor-
poratmg such devices is a generic term. - In practice it will have an acoustic
connexion only if there is an audible output. A more generally descriptive
term, with which it is intended to be synonymous, is * fluctuations . In
e the present discussion only spontaneous fluctuations will be considered;
-i.e. those which are governed by the laws. of statistical thermodynamics.’,
Man-made fluctuations, due for example to faulty contacts or radiated
interference, are excluded. ‘
The quantities which fluctuate spontaneously on a temporal scale are’
the numbers of active particles and their momenta or distribution in energy -
" states. These particles may be electrically charged as'in thermionic devices
or transistors or electrically neutral as in maser materials. In many, al-
though not all cases, a characteristic of the noise process is that the elemen-
tary events, which contribute to thc noise, occur at random. ‘This means
. that any particular event in no way influences any future e\}ent and the
+ ' probability that an event occurs in a given time mterval is determined only
by the length of the interval.’ :
Before dea.hng in detail with the various mechamsms which contrlbutc
to flyctuations in the output current and voltage of electronic devices it is
useful to consider briefly a few mathematical facts concerning the specifica-
" tion of noise.

2. MATHEMATICAL BASIS OF NOISE(1-3) -

2.1 SINGLE NOISE SOURCE

- Consider a quantity which fluctuates with time and has an instan-
N " taneous value x as illustrated in Fig. 1. Let its mean value be ¥. The.
~ value of the instantaneous fluctuation is then ;

Ax = x-% @1y

It is eviderit that the mean value of the fluctuation Ax, will be zero, but its
mean square value 42, will not. ‘In fact

7 = G-37 - ' 2.2)

so that the mean square value of the fluctuation is ‘equal to the difference -
between the values of the mean square and the square of the mean. of the

- fluctuating variable. Zx? is sometimes called the variance of the ﬂuctuatlon
and o= (2?)* its standard deviation.
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F.7 Hpde - -~ . " The Physical Basis of Noise

Instantaneous value of x

Time :
Fie. 1. Temporal fluctuationof a variabie x. ' (Note the magnified scale for )

2.2, COMBiNED EFFECT OF TWO NOISE SOURCES

"Consider an output fluctuation Az which arises from the combined
effects of a fluctuation Ax in x and of Ay in y. Since the individual fluctua-
tions are of a xmcroscoplc nature it is usual to find that thcy combme linearly

_as shown hy equatlon (2.3)..
‘ A4z =adx+b dy (23)

As before Az = 0 since Ax Ay = 0. For the mean square value of the .

output fluctuation we have

_( Ax 35 H) = & A7+ 52-+,2ab dx Ay (2.4)

*Before Z?- can be calculated from this equation it is necessary to evaluate
Ax Ay. In doing this any functional dependence between x and y must be
taken into account. 'We consider two cases:

- (i) # and y completely independent (or uncorrclated) ;e a glven valuc
of x in no way affects the instantaneous value of y. It follows that dxdy =

.0 since dx, Ay = 0. The averaging can be vmuallzed as being done at a

fixed value of x (say) over all values of yor vice versa. Equation (2.4) may

now be written

. Z;‘=’«:’z]?+b2ﬂ ‘ (2.5)

This is an important result. It shows that completely independent fluctua-
tions add on a mean square basis.

(ii) » and y are to some extent interdependent (correlated); i.e. a given
value of x has some influence on the value of . In these circumstahces
4dx Ay is not equal to zero and must be evaluated for use in the second part
of equation (2.4). Alternativtly, in accordance with the first part of
equation (2.4), the total instantaneous ﬂuctuatxon may be. determined,

" and its mean square then evaluated.

2.3. THE INSTANTANEOUS VALUE OF A FLUCTUATING QUANTITY ’

A characteristic of noise is that it is not possible to specify precisely what
its instahtaneous value will be. Specification is possible only on a statistical
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ba.sls Consider a fluctuating quantlty x whose mstantaneous value is
measured repeatedly a great number of times V. Let the range of values
of x be divided into alarge number of contlguous small intervals dx.. Then
a “ probability density. functlon, p(x), is deﬁned as follows

hm (Number of values of # in the mterval dx at x)/dx

blx) = ;’7_}30 Total number of values of x

(2.6)

- The probabxlxty that a’ partlcular measured value lies in an-interval of
- mﬁmtcmmat lcng’th dx at x is p(x) dx, i.e. this js the shaded area shown in

+ 00
Fig. 2. Clearly j p(x) dx = 1. 'From a knowledgepf the probability
Y ) w _

ptx)

O -—ll : x
. dx .
Fic. 2. The probability density function of a ﬂué:_tuating variable

density function p(x), it is possible to calculate the mean value X of the
fluctuating quantity and its mean square value ¥ as follows

’ 400 -
s=[Capwac .. en
p g j:’“’xzp(x) A 2.8)

In studymg noise we are generally more concerned with the value of the
fluctuation Ax itself rather than the value of the variable x. ,In terms of the
probabxllty density, the mean square value of the fluctuation is evaluated as

i ji’ (x - %)? plx)ds @9)

One of the most unportant dlstrxbutlons in noise theory is the normal or
Gaussian distribution

) -=;,-(—2;) exp { - (x~%)120%) o @10
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where o = (_P)* The Gauss1an dlstrlbutlon may be consndered as that
pertaining to systems in which the numbers of independent elementary
events, whose effects when summed give the instantaneous value of the
-variable x, are large. A ¢haracteristic of the Gaussian distribution is that no
matter how large a value we may choose for x there is a finite probability of it - -
being exceeded in an observation. - The probability falls very rapidly at large
values of x, however, so that for practical purposes noise peaks exceeding a few
times the standard deviation can be ignored. When the numbers of elementary
events are not large then the Gaussian distribution is not appropriate. For
‘this or other reasons it may be more appropriate to consider either the
binomial distribution (as in the case of division of current between anode
and screen of a pentode) or the Poisson distribution’ (as in the case of therm-
ionic emission .or radioactive decay). Both' of these. distgibutions, which
apply to systefhs in-which the variable can have only integral values,
reduce to the Gadussian distribution when:the number of elementary events

- per unit time mterval is large.

2.4, "THE SPECTRAL DENSITY OF NOISE
Consider for example a time-dependent voltage v(t) between  two

terminals. of an electrical system. When this is a signal voltage of finite
extent in time it is possible to represent it by a Fourler integral,

u(t),:_[f F(w)eiwtdf - @.11)

1 e. to transform its representation from the time domam to the frequency
' domain.

F(w) df is interpreted as the complex representation of an infinitesimal
component of »(¢) containing frequencies in the range df at f. Appropriate
values of F (w) may be calculated by means of the transformation

+8 ' '
Flw) = f o(t) et dt : (2.12)
-
Furthermore, if ¥(w) is a generalized immittance function associated with

the system, for example a transfer admittance, then the transfer current
due to »(¢) may be determined from :

+ < ’ i .
i) = [ 7 re) o) ey (213)
The above procedure is not possible when v(f) is a noise voltage havmg
infinite extent in time because then the mtegral for F(w) does not converge.
An alternative procedure is adopted; this is based on the distribution in |

ﬁequency of the mean square value of the fluctuation. The concept of a
noise power spectral density S,( f) is introduced such that - °*,

) = f S(fF) df N C R

Here the suffix » denotes a * voltage spectrum. Formally, So(f) is
deﬁned as follows
12
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So(f) ;imeIF(T(f’)IZ ‘ ‘ h " (2.15)

where the “ truncated ” Fourier transform F(w) is now deﬁned for v(t) ‘
between ¢t =0 and ¢ = T as :
T ) : .
F(w) =f o(t) e di o _‘ (2.16)
(o]

In F ig. 3a typlcal form of frequcncy-dcpcndence for So(f) is shown The
shaded area represents the amount ‘of the mean square noise voltige of
equation (2.14) contained in a narrow band of frequencies df at f. The

total area under the curve is eqmvalcnt to & (1 )

4

SV er)

© Frequency f (cf)
Fig. 3. A typical distribution of noise spectral density

The response of electrical systems to noise may be calculated using a
methad analogous to that for small signals, which was illustrated by equa-
tion (2.13). For example, if ¥(w) is the adrmttance hetween two terminals”
then

&u>=f.mntnmrq-- e
where the suffix i denotes a * current spectrum.

As was made evident in section 2.2 it is necessary to be able to dcal not
only with the mean values of the * self-products > of fluctuating quantities, =

. asin equation (2.14), but also with “ cross-products . Consider a fluctuat- .

ing voltage u(t) which is the sum of two separate but not independent :
fluctuations v,(¢) and »,(¢); namely

Co(t)_ = vy(t) +o,(8) - &w>

“and let F,, F,; and F,, be the’ Fourier transforms of the corresponding

truncated processes over time range 7 as defined by equation (2.16), thenT

tWhen a complex number is written in polar form (say) as |F(v) |0 and- then multiplied
by its complex conjugate |(F(v) |e6)* = ] F(v) |¢ 76, the product is | F(v) |2.

13
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gy L 2lm B[ 2lm (B, +F)(Fo* +Fop*)
) = e T T Tow T :
= Salf) + S ) + SN 48 ) T (219)
where the cross-spectra are defined by '
2lim F,*F, /
(F) = 2hm Doy" gy :
S f) =TT - (2.20)
21lim F,*F, * ' .
- il ML I :
Sopor (S) Tow T | (2.21)

" Here quantities marked w1th an asterisk are the complex conjugates of the
corresponding unmarked quantities. We note that

Soms(f) = S*om(f) 222

so that equation (2.19) may be rewritten as

So(f) = Su(S) +S0p(f) +2 Re {S"l”z(f)} - (2.23)

where Re signifies * the real part of ”.
We consider now two powerful methods for determining S( f), which are
based on well-established theorems.
A

2.4.1 Carson’s theorem

Consider a fluctuating variable i(¢) whose magmtude is the sum of the
effects of a large number of identical events occurring at a random rate 1
per second. Then Carson’s theorém is

Si(f) = 2A|F(w)]|? , (2.24)

where F(w) is the Fourier transform of each of the individual events. An
example of the use of the theorem is in the derivation of the classical shot-
noise formula for a temperature-limited electron stream emitted by ‘a
thermionic cathode (see section 3.2). The * event ” is the emission of an
electron by the cathode; its * effect ”’ is the current pulse induced in the
external circuit while it'is in transit to the anode; F(w) is the Fourier
_transform of this pulse.

When the individual events are not identical, equation (2.24) is modified
" as follows

Si(f) =24 [F@)[? | - (2.25)
where I‘F(w) |2 is fw | Fr(w) |2g (v) dz; g (z) dvis the/ number of
: o | ;

events occurring per seeond with a characteristic time between 't and 7 +dr

and for which the Fourier transform is F;(w). An example of the use of this -

modified formula is in the derivation of the noise of a gas discharge.

2.4.2. The Wiener-Khintchine theorem

The autocorrelation function (sometinies called the autocovariance)
of a time-dependent quantity x(¢) is defined as

14
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m 1 (T
x(t) x(t +3) dt (2.26)

R = 5O #+) = oo |

The Wiener-Khintchine theorem specifies Sx( /) in terms of the autocorrela-
tion function as follows - - . ,

. e : _
- S(f) =4 J R(s) cos ws. ds : -(2.27)
: 0
so that if R(s) is known for the physical process in question; Si(f) can be
* readily determined. ~An example of the use of this theorem is given in
section 3.3 in which the generation:recombination noise of a semiconductor
filament is calculated.

3. PHYSICAL SOURCES OF NOISE

It was stated in the introduction that noise is a resuit of spontaneous
fluctuations in the number and energy of the active particles in an electronic
device. The use of the word particles presupposes a classical model; that

"is one for which AffkT<1 or f<2x10"° Ts'> Here =662 x10™ Js
is Planck’s constant, £=1-38 x 107 J/deg is Boltzmann’s constant and T
is the absolute temperature. For most of the conditions experienced-in

- electron devices and systems a classical model is adequate. In devices
such as'masers, however, which operate near the absolute zero of tempera-
ture a classical model is not appropriate. : :

3.1. JOHNSON NOISE - S

3

This is alternatively known as ‘ thermal noise ”, which is not a good -
term since most noise may be said to be of ‘ thermal ” origin, or Nyquist
ndise® after the man who first derived the expression for its spectral.density
on a theoretical basis. Johnson showed that a resistor having a.c. resistance
R at frequency f, which was in thermal equilibrium with-its surroundings,
developed at its terminals a noise voltage whose spectral density was given
by the formula : _ ) :

’ S, = 4kTR (3.1)
An equivalent expression for the spectral density of the short-circuit noise
current between the terminals is ) .

S; = 4TG o (3.2)

where G is the a.c. conductance at frequency f. These expressions also
apply® to any complex, passive two-terminal network which is all at the
same temperature 7. ' ‘ - ’

In such a case R is the resistive component of the impedance and G the
conductive component of the admittance. B ,

Equations Q 1) and (3.2) relate the electrical manifestation of the thermal
energy of the Current carriers (electrons, holes, ions) to the atoms of the
material as a whole, through the dissipative mechanism represented by R
and G. These equations are of a general nature and apply to any dissi-
pative medium which is in thermal equilibrium. As may be expected -
therefore, the proof of these formulae rests on arguments of thermodynamics

‘15
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and statistical mechanics. Proofs have, however, been given based on
partlcular models of conduction-electron distribution and scattering. -
_ a resistor for example,() the noise is considered to arise from the summatlon
of the effects of the short current pulses of the free electrons as they travel
. between collisions, each pulse having a flat (or white) noise spectral density.
The information contained in equations (3.}) and (3.2) may be expressed -
in another way.- We may consider a resistor as a source of noise power.
the maximuin available noise power P from the resistor will be absorbed
by a matchcd load and its spectral density S, will be

S =kT - C(33)

~ The Johnson noise power available from a resistance is therefore independent
_ of the resistance and proportlonal to ity absolute temperature.

Classical Johnson noise is well-established both theoretically and
experimentally. It is not surprising therefore that the value of its spectral
density is often used as a reference standard when specifying the spectral
densities of other types of noise. In 'this connexion the concepts of noise
temperature ratio, noise figure and equivalent input noise temperature have
been successively introduced. These are defined in sections 5.3 and 5.4.

- Recently a physical standard of Johnson noise has been set up® for the
frequency range 0 to 1000 Mcfs. The resistor, of approximately 60 is of
film type and its temperature may be varied using a furnace. _ The available
noise power output is a linear function of temperature up to 1300°C.

=3.1.1 Quantum-mechanical constderations

- Equation (3.1). represents a transcription to circuit form of black body
radiation, which originates from accelerated particles in excited states.
This may be shown directly(9) by considering a resistor whose resistance is
matched to the radiation resistance of an aerial which is immersed in black-

~body - radlatlon at temperature T. On the classical model, using the
: Raylexgh Jeans approximation for the energy density in the radiation field,
equatlon (3.1) results. If instead the Planck law of quantized radlatlon
-is used for the’ energy density, as is more generally appropriate, then the
following expression arises for So(f) :

\ S.(f) = 4R ”‘i 1 T B

This of course reduces to equation (3 l) for AfIkT<1.

A further quantum-mechanical correction to Johnson’s formula must be
made to take account of the fact that even in the ground state at the absolute
zero of temperature there is a residual zero-pomt energy E, = hf]2, with
which spontaneous emission of radiation -is associated.  The completc
‘expr&sﬁxon for the spectral density of the fundamental ‘ thermal * noise
is then '

S() - 4fR (5 + e,.—m;—i) | (3.5)

A rigorous derivation of this formula has been carried out by Ekstein and
Rostoker(!%),

16



F. 7. Hyde o o . , le Phy:zml Basis-of .M)m

It should be- stressed that the Johnson noise formulac apply to thermal
equilibrium conditions.” Active devices do not operate in such conditions.
Usually there will be current flowing as in valves and transistors.

Nonetheless, if-the apphed electrical fields are such that the velocity
distribution of the current carriers is unchanged apart from the linear addition
of ““ drift ” to * thermal ”” velocities, then Johnson noise as described above -
will still arise. It will generally be augmented b) noise which is associated
. with applied fields.

" An mtcrcstlng example of the significance of Johnson noise is in the field -
of parametrlc amplification (see paper by Butcher), in whicha * pumped »
variation of semiconductor diode depletion-layer capacitance is used -to
promote s1gna1 gain. Pure reactive elements do not themselves behave as
. Johnson noise sources, since they are non-dlssrpanve Practical diodes .
always possess a finite resistance effectively in series with-the deplctlon-layer
capacitance, however, and this does contribute Johnson noise. Such noise
may contribute sxgmﬁcantly to the total noise of the amplifier. Johnson
noise is also of i importance in transistors (see paper by Hibberd). Thcrc are
always dissipative connexions between the terminals and the active regions.
In particular there is ah ohmic resistance ry’ in series with the base lead:
in high frequency applications the Johnson noise of r;’ can be very 51gm-
ficant. ‘

3.2. sHOT NOISE(D)

Schottky('?) carried out the first theoretical study of the fluctuations which
arise in the anode current of a temperature-limited thermionic ledC, on the
assumption’ that the emission of electrons from the cathode is a random
process. He showed that- the resulting fluctuations in the instantaneous
number of eleetrons in transit produced a noise- current in theanode circuit,
whose spectral density is given by

= 2T (3.6)

Here ¢ is the electronic charge and.] is the anode current. The analysis
was restricted to frequencies con51dcrably less than the reciprocal of the
electron transit time. Equation (3.6) is well-established cxpernmentally
Tt may be pointed out here that there is an additional.source of noise in
a tcmperature-lumted electron beam. This arises because, in addition to the
emission of electrons being a random process, the velocities will also fluctuate
with a Maxwellian distribution about the mean value. For frequencies
~ low compared with the reciprocal of the transit time it was shown by Rack(!¥
that the spectral -density S, of the velocxty ﬂuctuatrons in the beam is given
by
ek T, o :
Su = _ mI‘ (4-mn) ' (3.7

Where T. is the cathode temperature and m the electron rest mass.
The derivation of S,(f) for a temperature-hmlted thermionic diode
having planar geometry affords a‘ good - example of the use of Carson’s

" theorem(, It is assumed that the emission of electrons is a random

process. To 31mp11fy the problem it is alsp assumed that all electrons leave
the cathode with zero velocity. For tempera ature-limited operation there

17



