Least Square Estimation
with Applications to
Digital Signal Processing

Arthur A. Giordano
Frank M. Hsu




Least Square Estimation
with Applications to
Digital Signal Processing

Arthur A. Giordano
Frank M. Hsu

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS

New York « Chichester « Brisbane « Toronto * Singapore



Copyright © 1985 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work

beyond that permitted by Section 107 or 108 of the

1976 United States Copyright Act without the permission
_of the copyright owner is unlawful. Requests for

permission or further information should bé addressed to

the Permissions Department, John Wiléy & Sons, Inc.

Library of Congress Cataloging in Publication Data:
Giordano, A. A. (Arthur Anthony), 1941~

Least square estimation with applications to digital
signal processing. ‘

“A Wiley-Interscience publication.”

Includes index.

1. Least squares— Data processing. 2. Estimation
theory— Data processing. 3. Signal processing— Digital
techniques. I. Hsu, F. M. (Frank Ming), 1946~
IL. Title.

QA275.G56 1985 621.38'043 84-19496
ISBN 0-471-87857-X .

Printed in the United States of America

10987654321



Preface

Least squares error techniques were devised independently by Gauss and
Legendre in the early 1800s as a method for estimating parameters from noisy
measirements. These techniques initiated the development of what is now a
voluminous b.dv of mathematical and scientific literature describing investiga-
tions on an extensive variety of least square error applications. Each new
application seems to spawn its own theoictica! formulation. However, in many
instances least square error principles with geometrically based foundations
provide a unifying thread among seemingly unrelated problems. A dual
objective of this text, then, is to establish the mathematical framework of least
square error principles, and to subsequently demonstrate the utility and
widespread use of these principles in a variety of digital signal processing
applications. :

Important questions regarding the purpose and objectives of this book
require further clarification, specifically:

Why is this book important?

What can be found in this book that is unavailable elsewhere? .
What circumstances justify a treatise on this subject at this time?
Who is the intended audience?

Ll adl A o

Although these questions are related, they will be answered individually,
beginning with the third question.

Digital computers and real-time digital processors have forced dramatic
changes in such diverse scientific disciplines as communications, control, radar,
seismology, bioelectronics, etc. Least square error algorithms, which were
originally developed to process data, often involve an extensive amount of
iterative computation. Thus, special-purpose digital signal processors, pro-
grammable digital signal processors and /or digital computers are ideally suited
for implementing least square error algorithms. In addition, the research and

vii
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development of least square error .algorithms, which previously had been
constrained by a scientist’s perseverance in performing hand computations,
have been enhanced and extended by the computational power and speed of
modern digital signal processors and digital computers. As a result, new
applications and new least square error algorithms supportinig a variety of
applications are now possible that, until the last decade, could not have been
conceived.

In response to the second question, this book documents important least
square error algorithms in a unified way, with consistent notation. Both
deterministic and probabilistic formulations are presented in a geometrical
framework. The subject matter treated here is typically scattered in the
available literature, or is developed within the context of a narrow specific
application. By presenting these algorithms within a single reference source,

~unique and /or common features associated with the various algorithms can be
identified. In Part I, a mathematical formulation of the least square error
algorithms is provided. In Part II, certain digital signal processing appHications
that have achieved widespread use are selected as examples. One goal of this
book, then, is to offer the reader an opportunity to comprehend the theory in a
manner which permits a transfer of the technology to the specific application at
hand.

The importance of the book (by way of an answer to the first question) can
be summarized as follows: (1) The generality and widespread applicability of
least square error algorithms in digital signal processing is not well known; (2)
a consistent unified treatment of least square error algorithms, which permits
the reader to implement these algorithms in hardware and/or software, has
heretofore not been available. Many numerical examples which can be fol-
lowed by hand computation are used in the book to help the reader understand
detailed computational procedures required for least square error algorithms.

The fourth and final question posed above concerns the definition of the
intended audience. This book is specifically written for practicing engineers
and scientists involved in digital signal processing and for advanced students _
interested in digital signal processing. Desirable prerequisites include courses
in matrix algebra, probability and stochastic processes, and digital signal
processing.

The structure of the book is as follows: Chapters 2—-5 (Part I) present the
least square error algorithms. The remaining chapters (Part II) cover the digital
signal processing apphcatlons In Chapter 2 a Fourier-series expansion using
orthogonal functions is presented. The Fourier-series coefficients are derived
both by differentiating the mean square error and by applying the orthogonal-
ity principle. Subsequently, geometric concepts are presented to introduce least
square optimization in Hilbert space. Both the orthogonality principle and the
Gram-Schmidt orthogonalization procedure are then used to derive the normal
equations. In Chapter 3 the Durbin, Levinson and Burg algorithms are derived.
In the derivations a digital communications model is assumed using s1gnals
with either known correlation functions or correlation functions which can be
estimated from the observed data. The Durbin algorithm provides a recursive
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solution to the Yule-Walker equations. The Levinson algorithm provides a
recursive solution to the normal equations that is referred to as a Wiener filter.
The Burg algorithm provides a solution using forward and backward error
prediction with an implementation which assumes a lattice structure form. In
Chapter 4 a general least square lattice algorithm that is recursive in both time
and order is described for the nonstationary signal case. In Chapter 5 the
Kalman recursive least square estimation algorithm is derived by generalizing
the minimum-variance-weighted-least-square method. A computationally sta-
ble form of the Kalman algorithm, known as the square root Kalman al-
gorithm, concludes the chapter.

Part II describes applications involving equalization, spectral analysis, dig-
ital whitening, adaptive arrays, interchannel interference mitigation, and digital
speech processing. The first application, equalization, receives the greatest
coverage, since many of the algorithms presented in Part I are utilized. The
discussion of equalization algorithms also provides an opportunity to identify a
relationship between the Kalman algorithm and generalized least squares
lattice structure formulations. Spectral analysis, treated in Chapter 7, considers
the application of autoregressive methods, such at the Burg algorithm, for
attaining high-resolution spectral estimates. In Chapter 8, which deals with
digital whitening, use of the Durbin implementation of a Wiener filter and the
Burg implementation of a maximum entropy filter result in substantial
performance improvement by suppressing narrowband interference in spread-
spectrum communications. The chapters on adaptive arrays and interference
mitigation (Chapters 9 and 10) describe techniques for combining multiple
signals using minimum piean square error methods to process digital signals
efficiently and reduce distortion from interference. Chapter 11, dealing with
speech processing, presents applications of linear prediction theory and effi-
cient time-domain waveform coding .schemes. These applications represent
examples of the use of least square algorithms in digital signal processing and
are not intended to be exhaustive. A .

We would like to express our appreciation to General Telephone and
Electronics (GTE) for giving us the opportunity to work on the variety of
problems presented in the applications part of the text. We are also indebted to
GTE’s support during manuscript preparation. We would like to thank numer-
ous colleagues who contributed to the original research at GTE, including
P. Anderson, Dr. A. Levesque, J. Lindholm, Dr. H. Nichols, Dr. H. dePedro,
M. Sandler, Dr. T. Schonhoff and Dr. John Proakis of Northeastern Univer-
sity. We owe special thanks to Dr. David Freeman, who reviewed the entire
manuscript and made many worthwhile suggestions. We are also indebted to
L. Carroll for her careful editing and typing of the original manuscript.

ARTHUR A. GIORDANO
FrRank M. Hsu

Needham, Massachusetts
January 1985



Notation

Frequently used symbols required in the text are provided in this section.*t

Every attempt has been made to use a consistent notation. Often, subscripts

and index parameters are the only means of distinguishing symbols. Unfor-

tunately, very little consistency exists in the literature as a result of the wide

variety of researchers and applications. Thus, care should be exercised in

compdring algorithms presented here with references available elsewhere.
Among the characters and operators used in the text are

&(x) ensemble average of random variable x

V(x) variance of random variable x or power of x (62 = V(x) in
Chapters 1-8, 10, 11)

x estimate of variable x

{x:} set of variables x, for k¥ ranging over a specified interval

x* complex ccnjugate of variable x

X’ transpose of vector,! X

(1) impulse function defined by [*_8(#)dt =1 and 8(z) = 0 for
t+0

8(l) unit sample function = { (l): » 5: g

P minimum value of the quantity‘P

*Vectors and matrices appear in boldface print
Al vectors are defined as column vectors; for example, if X has elements 1, -+ vy, then

B

xvii



xviii NOTATION

A consistent definition is maintained throughout the text for the following
symbols, with the exceptions noted

a, prediction error coefficients in Chapters 311, scalars in Chapter -
2
dpg g prediction error coefficients with order index

ay(m,N) forward prediction error coefficients

Ay(N) " vector of forward prediction error coefficients, that is,
WINY=(ay(Q,N),...,ay(M, N))
A, u(N) extended vector of forward prediction error coeflicients, that is,

Ay (N)=(Lay(,N),....ay(M.N))

ayu(N) scalar in lattice structure

oy DFE forward coefficients in Chapter 6

b, " linear weights or prediction coefficients

br i linear weights or prediction coefficients with order index

by(m,N)  backward prediction error coefficients

B, (N) vector of backward prediction error coefficients. that is,
By(N)y= (b (O, N),...,b\ (M —1,N)

B, (N) extended vector of backward prediction error coeflicients, that
is,

B, (N)=(1,b,(0.N),...,b,,(M —1,N))
B vector of Kalman prediction coefficients, that is,

B = (b, ....b,)

B, vector of Kalman prediction coefficients, that is,
B,: = (b oo by )
B, . predicted value of current Kalman coefficient estimate B,
B, DFE feedback coefficients in Chapter 6
C, Fourier-series coefficients
s linear equalizer coefficients in Chapter 6
C, vector of feedforward and feedback equalizer coefficients, that is,

¢ = (ag; ... ap. Byo. .., Byy,) (at time instant k)

C, vector of linear equalizer coefficients (at time instant k), that is.
C,i = (CO""’CM)



€

€y

e/{l(k’N)}
e{,(N)

en(k,N)
en(N) }
ey(k.N)
eM(N) }
E[(N)
Ey(N)

ey (k,N)

eb (k. N)

E
Ek
E I>/ N, 0

NOTATION xix
vector of feedforward and feedback equalizer coefficients, that is,
C,{{(N) = (CM(O7 N),... ’CM(M’ N))

vector of feedforward and feedback lattice equalizer coefficients,
that is,

Gy dN) = (Cy (O, N),...,Cp (M, N))

zero mean random vector for Kalman algorithm with M ele-
ments

lattice structure vector with M elements

square root Kalman N X N diagonal matrix with elements
d,(k)

error signal between received signal and its estimate

error signal between desired signal or information symbol and
its estimate

forward error signal

backward error signal

error between information symbol and its estimate

minimum forward MSE power vector with M + 1 elements, that
is, E[(N) = (f4(N),0,...,0)

minimum backward- MSE power vector with M + 1 elements,
that is, Eff(N)=(0,....0,7r,(N))

vector of forward error signals for DFE lattice structure, that is,
eli(k, N) = (e y(k, N) €] (k. N))

vector of backward error signals for DFE lattice structure, that
is,

ey(k,N) = (e} y(k, N) e} yy(k, N))

- Kalman error vector, that is, E' = (g,,..., &) *

Kalman error vector, that is, E] = (&;,..., &x;)

ratio of signal energy per bit to noise powenspectral density or
energy contrast ratio
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E(C)
E(a, B)

E

fulN)

Jx

'YM(k; N)}
Ym(N)

8k

- total number of taps

linear equalizer MSE (ensemble average)

DFE MSE (ensemble average)

time average of continuous squared error signal
minimum forward MSE power

channel coefficients in Chapter 6
scalar in lattice structure
crosscorrelation between received and transmitted signals (en-

semble average)

crosscorrelation between received sample and information sym-
bol in Chapter 6

M X N Kalman gain matrix
M + 1 element Kalman gain vector with order index

gradient vector for steepest descent algorithms with
M, + M, + 1 elements

k th information symbol

k th information symbol decision

estimate of kth information symbol

scalar in lattice structure
Kalman gain vector, that is, K; = (K; 4,..., Ky ;)
loss function

order of prediction filter
related to number of linear equalizer
tap coefficients in Chapter 6, that is, either M + 1 or 2M + 1

¥
number of feedforward DFE coefficients minus one

number of feedback DFE coefficients

total number of DFE lattice equalizer coefficients, that is,
Mp=M + M, +1

alphabet size

scalar in lattice equalizer structure

+ total number of signal samples

additive noise samples



n(¢)

N,

Pk, k—1)
p(t)

PM

Py(N)
Py(N)
P{(N)

ry(N)

s(1)

NOTATION  xxi
additive channel noise
noise power spectral density
M X M transition matrix for Kalman coefficients dynamic model
transmit filter pulse with symbol duration
ensemble average MSE for either received or desired signals
time average MSE
time average backward error power
time average forward error power

M X M error covariance matrix of Kalman prediction coefﬁ-
cients

M X M Kalman prediction error covariance matrix
power spectral density of received signal

zeroth time average autocorrelation element, that is,
q(N) = py(0,0)

vector of time average autocorrelation coefficients, that is,
Qu(N) = (px(1,0),...,p5(M,0)
M X M covariance matrix of Kalman random vector 8,

time average autocorrelation of received signal in prewindowed
method (in some instances the weighting coefficient w = 1)

ensemble average received signal autocorrelation coefficients +
M X M covariance matrix of received signals (ensemble average)
M X M time average autocorrelation matrix of received signals

N X N Kalman covariance matrix of error 51gnals (ensemble
average)

N x N Kalman covariance matrix of error mgnals (ensemble
average)

minimum backward MSE power
desired or transmitted signal samples
transmitted signal

b

Kalman vector of transmitted signal samples, that is
S'=(5p...,5x)

Kalman vector of transrmtted signal samples, that is,
= (S1h0e--5Sn,0)
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T
T,

5

T
TO
Tl

U,

symbol interval or duration -
sampling interval

chip interval

period

time interval or integration interval

N X N square root Kalman upper triangular matrix with ele-
ments u; (k)

M th time average autocorrelation coefficient, that is,
vp(N) = py(M, M)

vector of time average autocorrelation coefficients, that is,
VA’I(N) = (PN(O; M),.. o Py(M — 1, M)
weighting coefficient in Chapters 4 and 6

time average crosscorrelation vector between information sym-
bols and received sample, that is,

Wi (N) = (W, Wy)
received signal

received or observed signal sampies .

received signal vector, that is, X},(i) = (x,,..., x,_,,) (In DFE

Tlattice X,,(7) is the vector of received samples and information

symbols.)

vector of received samples and information symbol decisions for
DFE lattice with M. elements

received signal vector, that fS, X ;, =(Xpes Xpy)

N X M Kalman matrix of received signal samples

Kalman vector of received signal samples, that is,

Xe(i) = (X g0 s Ximm—1y0)

square root Kalman vector of received signal samples, that is,
X{=(X) 40 s Xp 4)

vector of received signal samples, that is,

X = (xpeees Xpam)



NOTATION xxiii

X, vector of received samples and information symbol decisions in
Chapter 6

- . .
RE= ioeos Xponts Becy- s T )

NOTES

1. MSE = mean square error
2. DFE = decision feedback equalizer

3. Subscripts on received signal are used to distinguish Kalman
and lattice structures. The time index k is used in the Kalman
case and the order index M is used in the lattice case.
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