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Preface

Growth and change. These are the themes of life and measuring them is the theme
of calculus. Learning how to measure rate of growth and learning how to use this
measurement is what this part of Calculus&Mathematica is all about.

In this unit of Calculus&Mathematica, you’ll work with the mathematics underlying
measurements of growth rates and you’ll use these measurements of growth rates
to model processes naturally occurring in life. You’ll have the chance to model the
United States national debt, the United States population, growth of an animal,
the blood alcohol level resulting from a given drinking schedule, the relationship
between the growth of the height of an animal and the growth of the weight of the
same animal, failures of O-rings on the space shuttle, credit card interest, personal
finance, competing species, competing armies, spread of infection, and a lot more.
Along the way, you'll get really good at Mathematica calculations and plotting.
By the end of this part of Calculus8&Mathematica, you’ll be well on your way to
mastering Mathematica as you begin to master calculus.

How to Use This Book

In Calculus&Mathematica, great care has been taken to put you in a position to
learn visually. Instead of forcing you to attempt to learn by memorizing impenetra-
ble jargon, you will be put in the position in which you will experience mathematics
by seeing it happen and by making it happen. And you’ll often be asked to de-
scribe what you see. When you do this, you’ll be engaging in active mathematics
as opposed to the passive mathematics you were probably asked to do in most
other math courses. In order to take full advantage of this crucial aspect of Calcu-
lus&Mathematica, your first exposure to a new idea should be on the live computer
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screen where you can interact with the electronic text to your own satisfaction.
This means that you should avoide “introductory lectures” and you should avoid
reading this book at first. After you have some familiarity with new ideas as found
on the computer screen, you should seek out others for discussion and you can refer
to this book to brush up on a point or two after you leave the computer. In the
final analysis, this book is nothing more than a partial record of what happens on
the screen.

Once you have participated in the mathematics and science of each lesson, you
can sharpen your hand skills and check up on your calculus literacy by trying the
questions in the Literacy Sheet associated with each lesson. The Literacy Sheets
appear at the end of each book.

Significant Changes from the Traditional Course

Your writing, plotting, and experimentation is the stock in trade of the course.

Experienced as a course in measurements heavily intertwined with other parts of
science and the world.

Your emphasis is on linear and exponential growth from the beginning, before
calculus begins. Linear functions are those with constant growth rates; exponentials
are those with constant percentage growth rates.

You learn at the very beginning that exponential growth dominates power growth
without appeal to the mysticism of I.’Hopital’s rule or any other calculus ideas.

You study functions not studied for their own sake, but rather for the measurements
they make.

You learn about the derivative as a measurement of the instantaneous growth rate.
As aresult, the idea that functions with positive derivatives are increasing functions
is available to you immediately without waiting for the Mean Value Theorem. The
interpretation of the derivative as the slope of the tangent line is delayed.

You work with and analyze real world data on applications important to you.

Financial calculations recur on a regular basis.

You learn the meaning of the derivative as a measurement at the same time you're
learning to calculate derivatives. This idea is reinforced by many plots that you
produce and analyses of the graphs of f[z] and f'[z] on the same axes.

Although. there is no formal “epsilon-delta” presentation of limits, you experience
the limiting process visually by plotting the average growth rates (f[z+h]— flz])/h
and the instantaneous growth rate f'[z] as functions of  and watch what happens
to the plots as they make h close in on 0.

The active form of the Mean Value Theorem, called the Race Track Principle, is
introduced. Euler’s method is explained in terms of the Race Track Principle.
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Following Poincare, you do differentiation of functions of two variables with respect
to each variable is done with no particular fanfare.

You do serious work with mathematical models involving derivatives. The benefits
are twofold: Working with the models reinforces the idea of what the derivative

is, and you can experience the tenacles of calculus outside the traditional calculus
classroom.

Biological models are favored over physical models at the beginning because the
derivative measures growth and growth is a natural biological process.

Linear dimension makes a decisive entrance into calculus.
Logistic growth is studied in some detail.

Qualitative analysis of the solutions of simple differential equations and the solu-
tions of simple systems of differential equations enters a calculus course for the first
time. Reasons: Studying them reinforces the meaning of the derivatives and they
beautifully show the scope of calculus in science. You experiment with predator-
prey, spread of infection, and Lanchester war models and try to explain the results
in terms of derivatives.

Parametric plots in two and three dimensions are studied in the first course because
they provide you with needed plotting freedom for what’s to come.
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LESSON 1.01

Growth

Basics
Growth of line functions

A line function f[z] is any function whose formula is f[z] = az + b where a and b
are constants. Here’s a plot of a line function:

In[I]:: fA[xl]ine function
Clear[f,x] 8
a=0.5; b=4; £f[x.] = a x + b; 7
Plot[£(x],{x,-2,8}, 6
PlotStyle->{{Red,Thickness[0.015]1}}, 5

AxesLabel->{"x","£[x]"},
PlotLabel->"A line function"];

-2 2 4 6

@

There’s steady growth as x advances from left to right. Here’s another:

— £lx]

In[Q/. Axline function
Clear[f,x]
a=-0.3; b=2; £f[x_] = a x + b;
Plot[£({x],{x,-2,8},

1.5
PlotStyle->{{Red,Thickness[0.015]}}, 1
AxesLabel->{"x","£[x]"}, 0.5
PlotLabel->"A line function"];

; R R Ch

Steady (negative) growth as z advances from left to right. Play with other choices
of a and b until you get the feel of a line function.
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B.1l.a.ii)

The most important feature of a line function f[z] = ax + b is revealed by the
following calculation.
In[3]:=
Clear[f,a,b,x,h]; £[x_] = a x + b; Expand[£[x + h] - £[x]]
Out[3]=
ah

Answer: The calculation reveals that when you take a line function f[z] = az+b,
then you find that

flz + h] - fla] = ah.

This tells you that when = advances by h units, then f [z] grows by ah units.
Consequently a line function f[z] = ax + b has constant growth rate of a units on
the f[z]-axis for each unit on the z-axis.

As you saw above, the growth rate of a line function f[z] = az + b measures out
to a units on the f[z] axis per unit on the z-axis.

Answer: Big positive a’s force big-time fast growth as the following true scale
plot shows:

Inf4):=
Clear[f,x]
a = 8;
b = 2;
£f[x_] = ax + b;
Plot [£[x] 9{1!'1 35} ’
PlotStyle->{{Red,Thickness[0.015]}},
PlotLabel->"Big a > 0",
AspectRatio->Automatic];

Small positive a’s force slow growth as the following true scale plot shows:
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In[5]:= ; Small a > 0
Clear[f,x]; a = 0.2; b = 2; f[x_] = a x + b; 2.6
Plot[£[x],{x,-1,5}, B D
PlotStyle->{{Red,Thickness[0.015]1}}, -—t"8t 1 2 3 4 5

PlotLabel->"Small a > 0", AspectRatio->Automatic];

a = 0 forces no growth at all as the following true scale plot shows:

Inf6]:= i =0
Clear[f,x]; a = 0; b = 2; f[x_] = a x + b; 2.4 Sy
Plot[f[I].{xy'1,5}s 2'2l *
PlotStyle->{{Red, Thickness [0.015]}}, AL R

AxesLabel->{"x","£[x]"},
PlotLabel->"a = 0", AspectRatio->Automatic];

Small negative a’s force slow (negative) growth as the following true scale plot
shows:

In[7]:= £x]
Clear[f,x]
a=-0.2; b=2; £flx_ ] = a x + b;
Plot [£[x] :{13'195}’
PlotStyle->{{Red,Thickness[0.015]}},
AxesLabel->{"x","£[x]"},
PlotLabel->"Small a < 0",
AspectRatio->Automatic];

Small a < 0

Big negative a’s force fast (negative) growth as the following true scale plot shows:

In[8]:=
Clear[f,x]
a = -4;
b = 2;
f[x_.] = a x + b;
Plot[£[x],{x,-1,5},
PlotStyle->{{Red,Thickness[0.015]}},
AxesLabel->{"x","£[x]"},
AspectRatio->Automatic];

fx]

Not a handsome plot, but the message gets through.

B.1.b)
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Answer: Here is a true scale plot:

In[9]:= £x]
Clear[f,x] 6
£[x_] = 0.5 x + 3; 5-;
Plot[£[x],{x,-1,6},AxesLabel->{"x","£[x]"}, 4. 2
AspectRatio->Automatic, 3.5

PlotStyle->{{GrayLevel[0.4],Thickness[0.011}}]; ZT 17 3 45 67

As you can see, f[z] = 0.5z + 3 goes up 0.5 units on the flz]-axis per unit on the
z-axis. This is in harmony with the fact that f[x] = 0.5 + 3 has growth rate 0.5.
As a result, f[z] goes up 0.5 times as fast as x goes up.

Growth of power functions f[z] = a x®

A power function f[z] is any function whose formula has the form f [x] = az* where
a and k are constants. Here’s a plot of a power function:

In[10]:= ™ power function
Clear [f ,I] 70
a=3; k=2; f[x_] = a xak; 60
Plot[f[!],{xiiss}! Zg
PlotStyle->{{Red,Thickness[0.015]}}, 30
AxesLabel->{"x","f[x]"}, 20
PlotLabel->"A power function"]; 10‘ x

The growth increases as z advances from left to right. Here’s another:

Inf1 1]-'= £lx] A power function
Clear[f,x] 3
a=3; k=-2; f[x_] = a xak; 2.5
Plot[f[X],{!,1s5}; .
PlotStyle->{{Red,Thickness[0.0151}}, Lo
AxesLabel->{"x","£[x]"}, 0 ;
PlotLabel->"A power function"]; il %

The (negative) growth decreases as x advances from left to right.

Answer: Here is what a large positive k forces:
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Inf12]:= £ix] Big k > 0

Clear[f,x] 3000

a=3; k=5; f[x_ ] = a xak; 2500

Plot[£[x],{x,1,4}, 2000
PlotStyle->{{Red,Thickness[0.015]}}, 1500
AxesLabel->{"x","£[x]"}, 1000

PlotLabel->"Big k > 0", 50()' x
PlotRange->A11]; 1.5 2 2.5 3 3.5 4

Look at those numbers on the vertical axis! Big positive k’s force big-time growth.
Here is what a small positive k forces:

Inf13]:= O el k= 0
Clear[f,x]
a=3; k= 0,2; f[x_] = a xak; .
Plot[£[x],{x,1,4}, 3.6
PlotStyle->{{Red,Thickness[0.015]}}, 3.4
AxesLabel->{"x","#[x]"}, 3.2
PlotLabel->"Small k > 0", } x
PlotB,an,ge-)All]; 1.5 2 2.5 3 3.5 4

A small positive k forces small-time growth. Here is what k& = 0 forces:

Inf14]:= £ix] k=0
Clear[f,x]
a=3; k=0; £f{x_] = a xak; 34
Plot[f[x],{x,1,4}, 32
PlotStyle->{{Red,Thickness[0.015]1}}, TE 2 2.5 3 35 27
AxesLabel->{"x","f[x]"}, 2.8

PlotLabel->"k = 0",
PlotRange->A11];

k = 0 forces no growth. Here is what a small negative k forces:

Inf15]:= £lx] small k < 0

Clear[f,x] 3

a=3; k=-0.3; f[x_] = a xak; 2.8

Plot[f[x],{x,1,4}, 2.6
PlotStyle->{{Red,Thickness[0.015]}}, 2.4
AxesLabel->{"x","f{x]"}, 2.2

PlotLabel->"Small k < O", | ~ X
PlotRange->A11]; 1.5 2 2.5 3 3.5 4

A small negative k forces small-time negative growth. Here is what a big negative
k forces:

Inf16]:= Elx) Big k < 0
Clear([f,x] }
a=3; k=-8; f[x_] = a xak; 2.5
Plot([f[x],{x,1,4}, :
PlotStyle->{{Red,Thickness[0.015]1}}, e
AxesLabel->{"x","£[x]"}, 0 ;

PlotLabel->"Big k < 0", PlotRange->A11];

X
1.5 2 2.5 3 3.5 4
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B.3.a)

B.3.b)

A big negative k forces big-time (negative) growth until z reaches the point at
which f[z] = az* peters out.

Growth of exponential functions f ] = ae™®

One difference between serious science and old-time classroom algebra is the signif-
icance of a certain squirrelly number called e.

In[17732
N[E,100]
Out[17]=

2.7182818284590452353602874713526624977572470936999595749669\
67627724076630353547594571382178525166427

Answer: Here is a plot of e*:

In[18]:= ik
Clear[x] 1000
Plot[Eax,{x,0,7}, 800

PlotStyle->{{Blue,Thickness[0.015]}},

600
AxesLabel->{"x","Eax"}]; 400
200
T 2 3 4 5 6 7°
Pristine exponential growth. Here is a plot of e %:
In[19]:= BO(=X)
Clear[x] 1
Plot[Ea(-x),{x,0,7}, 0.8
PlotStyle->{{Blue,Thickness[0.015]}}, 0.6
AxesLabel->{"x","Ea(-x)"}]; 0.4
0.2

Pristine exponential decay.

Answer: Here is what a large positive r forces:
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Inf20}:= a E~tr x) .
Clear[f,x] 10 Blg x > 0

a=3;r=26; £f{x.] = a Ea(r x); 8 10101

Plot[£[x]1,{x,0,4}, 6. 1010
PlotStyle->{{Red,Thickness[0.015]}}, 4. 10

AxesLabel->{"x","a Ea(r x)"}, 2. 1010

Plotlabel->"Big r > 0%, x
PlotRange->411]}; 1 2 3 4

Look at those numbers on the vertical axis! Big positive r’s force astoundingly
big-time growth. Folks call this by the name “exponential growth.”

Here is what a small positive r forces:

I’n[21]:= a E~(r x)
Clear(¢,x] Small r > 0O
a=3;r=0.5; £[x.] = a Ea(r x); 20
Plot[f[x},{x,0,4}, 15
PlotStyle->{{Red,Thickness{0.015]}},
AxesLabel->{"x","a E+(r x)"}, 10

PlotLabel->"Small r > 0",

PlotRange->A11]; 3 4
A small positive r forces small-time growth at first.
Here is what r = 0 forces:
In[22]: a EMN{r x) -
Clearif,x] £ -
a=3; r=0; £f(x.] = a Ealxr x); 34
Plot[£[x],{x,0,4}, 3z
PlotStyle~>{{Red,Thickness{0.0151}}, 0 - S T X
AxesLabel->{"x","a Ea(r x)"}, 2.8
PlotLabel~>"r = 0", 2.6
PlotRange->411];

r = 0 forces no growth.

Here is what a small negative r forces:

Inf23]:=
Clear(f,x]
a=3;r=-0.2; £{x_] = a Ea(r x)3
Plot(£(x},{x,0,4},
Plot$tyle->{{Red,Thickness[0.015]}},
AxesLabel=->{"x","a Ea(r x)"},
PlotLabel->"Small r < O",
PlotRange~>411];

A small negative r forces small-time negative growth.

Here is what a big negative r forces:



