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Preface

Modern mathematics has acquired a significant growth level with the rapid progress
of science and technology. Conversely we can also say that the development of
modern mathematics serves to lay the foundations for the progress of science and
technology. Mathematics till date has not only been a towering big tree having
the luxuriant growth of leaves and branches but has also deeply rooted itself in the
areas of morden science and technology. According to the Mathematics Subject
Classification 2000 provided by the American Mathematical Society, the subjects
have been numbered from 00, 01, - - -, up to 97 except absence of a minority and each
class has been further classified into tens of sorts of research directions. It is thus
clear that the contents of mathematics are vast as the open sea and mathematicians
having a good command of each branch like in the times of Euler no longer exist.

As stated above, modern mathematics has numerous branches, the research
contents and methods of distinct branches are very different. Hence it is not re-
alistic to expect mathematical researchers to be proficient in all branches. But it
is, in our view, necessary for them to acquaint themselves to a certain cxtent with
the contents and methods of mathematical logic. By ‘acquaint themselves to a
certain extent with’ we primarily mean that they should understand the introduc-
tion to mathematical logic, i.e. the theory of logical calculi, including propositional
and first order predicate calculi, because it is not only the common foundation of
axiomatic set theory, model theory, proof theory and recursion theory in mathe-
matical logic, but also the part in which non-logical experts are most interested.
Particularly for scholars who are engaged in teaching and scientific research in spe-
cialized subjects of computer, applied mathematics, artificial intelligence and so
on and for university students and graduate students who are studying in these
specialities, a familiarity with logical calculi is necessary.

The theory of logical calculi is an effective tool. A familiarity with the methods
and techniques in logical calculi will lay a foundation for further studying subjects
such as resolution principle, logic programming and theorem automated proving,
and the methods and techniques of resolution principle play a crucial role in logic
prograniming and automated reasoning. If we could have a textbook which intro-
duces commonly the theory of logical calculi and, based on this, presents clearly
and precisely the theory of resolution principle, it would be of great value for
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teachers, students and researchers engaged in the specialities of computer, applied
mathematics and artificial intelligence. This textbook is intended as an attempt in
this direction.

The reference [12] is regarded as a classic one. It introduces several proof pro-
cedures which are based on Herbrand’s theorem after examining in a great detail
the theory of resolution principle, and provides basic contents such as problem
solving and program design in theorem automated proving. The reference [12] is
a good book and was cited by the related literature at home and abroad. It is a
pity that the reference [12] lays special emphasis on the resolution principle, while
the introduction to the theory of logical calculi is limited to only the part that is
directly used later in the book. Important contents such as the equivalence of a
prenex normal form to the original formula and the completeness of propositional
and predicate calculi are not involved. Hence the contents of [12] are inadequate
for the readers who expect to study logical calculi. The reference [15] makes a
complement to [12], but the contents of logical calculi are still inadequate. The ref-
erences on mathematical logic listed in this book arc all masterpieces, in which the
introduction to logical calculi is a high standard and is orthodox. For example, the
proof for the completeness of propositional logic adopts the method of consistent
extensions, and the proof for the completeness of the first order predicate logic
adopts the traditional extension method by adding countably infinite individual
constants!l or by adding countably infinite variable symbols!?2). These methods
are of course rigorous and the arguments are unassailable. However, these meth-
ods seem too professional. In addition, the related literature lacks in general the
content of resolution principle. Hence it becomes necessary to publish a textbook
as mentioned above, which introduces first the theory of logical calculi in a com-
mon way and, based on this, presents clearly and precisely the theory of resolution
principle.

The authors found that:

(i) Although formalization and symbolization are the intrinsic characteristics of
mathematical logic, we should remember to use formal symbols as little as possible
or not use them if possible.

(ii) We should remember to describe abstract concepts as commonly as possible.
These two points are very important and will help the reader to better understand
logical notions. For example, in the semantics of propositional calculus, if we call a
valuation mapping a ‘judge’, the set {0, 1} of truth values a ‘mark table’, and the
set of all valuations ‘the panel of judges’, it will produce fairly good effects, and this
carries also a foreshadowing of the introduction to the semantics of many-valued

logics.
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(iii) The theory of Boolean algebras is closely related to the theory of logical
calculi and is the basic knowledge in which students major in mathematics and
computer must be proficient. Hence it is natural and easily comprelicnsible to
prove the completeness of propositional and predicate logics by proceeding from
the theory of Boolean algebras. This book takes full note of thesce three aspects
mentioned above when introducing the logical calculi. The algebraic proofs for
the completeness were first given in the reference [10], but the notations there are
different fromn the ones currently used, and the proof for the completeness of first
order predicate logic was fairly scattered. The reader needs reading tens of pages
in order to find the completeness theorem. This book will propose concisely an
alternative algebraic proof for the completeness in terms of the quotient algebra.

Resolution principle was proposed by John Alan Robinson in 1965, which is
one of the important tools in theorem automated proving (sce, e.g., [24],[25]). In
particular, one can drive a light carriage on a familiar road to study the impor-
tant content of logic programmingp(” in computer science after having an intimate
knowledge of a set of formalized methods in resolution principle. This hook, on
the basis of introducing systematically logical calculi in a common way, presents
the basic contents of resolution principle as clearly and precisely as possible. For
example, unification is a crucial notion in resolution principle and in logic program-
ming, we, however, cannot find anywhere the complete proof for the associative law
of composition of substitutions related to it. This book provides a rigorous and
complete proof for the associative law. As for the proof of the first theorem of
Herbrand, the reference [12] cited the Konig’s lemma of which the source cannot
be found out (it was only marked with ‘Knuth, 1968’ and did not appear in the
reference at all), and it seems other books omitted Koénig’s lemma. This book
gives an alternative lemma, i.e. Lemma 5.5.2, from which a rigorous proof for the
first theorem of Herbrand follows. For one more example, the reference [12], when
proving the completeness of Pl-resolution as well as that of lock resolution, gave
first only a relatively rigorous proof for the case of ground clauses but used rather
indefinite statements such as “it is easy to see ...” and “using ... a process similar
to that given in the proof of ..." for the general case. This book provides rigor-
ous proofs for these theorems by introducing the notion of resolution-preserving
extension and by establishing corresponding lemmas. Moreover, in order to find
the clause set of a formula one should find first the Skolem standard form of the
formula in general. Searching the Skolem standard form of a formula of the form
A A B, however, is much more complicated than searching that of each conjunct.
The reference [12] always turned without any declaration to compute the respective

Skolem standard forms of A and B when computing.that of a complex formula of
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the form AA B. Section 6.5 in this book will give a special discussion on this issue.
In addition, this book pays attention to discuss the theory in concern as clearly
as possible. For not easily understandable notions and theorems, this book gives
appropriate examples to explain them. For example, the proof of the lifting lemma
on resolvents is very long and is difficult to understand, and this book constructs
first an example (see Example 6.4.2) identical with the proof of the lemma, and
then gives the proof. This book frequently reminds the reader or summarizes the
problems in previous contents worthy our notice by means of “remarks” by stages,
and arranges plenty of exercises. We expect these will help the reader to better
understand the contents of the book.

In view of parallels between many and two-valued logical calculi, and partic-
ularly for extensive applications of many-valued logics in approximate reasoning,
this book arranges Chapter 8 which provides an overview of many-valued logical
calculi by introducing Lukasiewicz propositional fuzzy logic and the new formal
deductive system L£* proposed by the first author. Quantitative logic which is our
research work in recent years is arranged as the last chapter.

This book is divided into a total of 8 chapters. Chapter 1 provides preliminaries
and particularly the theory of Boolean algebras. Chapter 2 studies two-valued
propositional calculus. Chapters 3 and 4 introduce the semantics and the syntax
of first order predicate logical calculus, respectively, from which first order systems
with equality are excluded. Chapter 5 systematically introduces Skolem standard
form and Herbrand’s theorem. In Section 5.4 we propose the theory of regular
function systems which can be viewed as a generalization of Herbrand universe.
Chapters 6 and 7 discuss resolution principle and its refinements, respectively.
Chapter 8 introduces many-valued logical calculi. The last chapter, Chapter 9,
serves as an introduction to quantitative logic which is fairly young. We hope
it can develop towards the right direction and expect its possible applications in
related disciplines. Lastly, we would like to remind the reader that Sections 4.5
and 5.4 are independent of the main part of the book and hence are marked with
*. The reader can choose to skip over these two sections, while still following the
main thrust of the book.

The Chinese edition of the book was used as teaching material a number of times
for graduate students and visiting scholars. They corrected the slips in writing of
the first version and proposed many helpful suggestions. They all deserve our
thanks. Prof. Dao-Wu Pei at Zhejiang Sci-Tech University and Prof. Hong-Bo
Wu at Shaanxi Normal University deserve a very special note of thanks. They
discussed with the first author the completeness and the simplification of axioms

of the system £* for many times. These helped in compiling Chapter 8. We
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would like to thank Postdoctoral researcher Hua-Wen Liu at Shandong University,
and Graduate students of Shaanxi Normal University, especially San-Min Wang,
Feng Qin, Xiang-Nan Zhou, Xiao-Yan Qin, Cheng Han, Li Fu, Fang Ren, Xiao-Jing
Hui, Mu-Cong Zheng, Yong-Jian Xie, Qing-Jun Luo, Li-Feng Li, Dong-Xiao Zhang,
Dong-Li Liu, Yong-Mei Ru, Hua-Rong Zhang, Yu-Jing Song, Xiang-Yun Wang, He-
Jun Yuan, Long-Chun Wang, Qing-Yan Song, Rong Lan, Wen-Yan Xu, Ren-Suo
Su, Yan Ren, Xiao-Jue Ma, Jing-Jie Wu, Ye Jiao, Yan-Bin Luo, Heng-Yang Wu,
Meng-Ke Siqin, Jian-Hua Zhang, Miao Liu, Kai-Min Wang, Zheng-Bo Zhao, Jia-
Lu Zhang, Qing-Sheng Yuan, Jian-Cheng Zhang and Xing-Fang Zhang for their
helpful comments and useful suggestions. We would like to give our special thanks
to Jun Li, Yan-Hong She, Bang-He Han, Hui-Xian Shi, Li-Na Ma and Bi-Jing Li.
They did superb jobs of proofreading the draft of this English edition. Besides
catching many typographical errors, they gave us numerous valuable suggestions
on refining the language and on improving the readability of the book. We are also
grateful to Xin-Ling Huang for her help in typing the TEX files.

Finally, we want to thank prof. Ming-Sheng Ying at Tsinghua University, Aca-
demician Ying-Ming Liu at Sichuan University, profs. Wen-Xiu Zhang and Zong-
Ben Xu at Xi’an Jiaotong University, and profs. Bin Zhao and Yong-Ming Li at
Shaanxi Normal University for their advice and continuing support. We are ex-
tremely grateful to our editor Yang Zhang for his recommending the English edition
of the book for publication.

We apologize to colleagues who helped us in the preparation of the book but

are not mentioned here due to our inadvertent omission.
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Chapter 1

Preliminaries

According to the viewpoint of the School of Bourbaki, there are three mother
structures in mathematics from which all other mathematical structures can be
generated, and which are not reducible one to the other. These are precisely:
algebraic structure, topological structure, and order structure. The present chapter
is devoted to a brief introduction of the theory of order structure, and the latter
part provides an overview of algebraic structure. All these preliminaries will help
the reader understand the logical calculi better.

1.1 Partially ordered sets
1.1.1 Preordered sets

Definition 1.1.1 Let X be a non-void set. An n-ary relation R on X is a

subset of the Cartesian product set X™. If an n-tuple (z1,--- ,Zn) of elements of
X belongs to R, i.e. (z1, - ,Zn) € R, then we say that (z1,---,z,) satisfies R,
denoted by R(z1,--- ,Zn) = 1; otherwise, we say that (z1,--- , Z,) does not satisfy

R, denoted by R(z1,- - ,Tn) = 0. We write zRy instead of R(z,y) = 1 in the case
of n = 2. A unary relation R on X is nothing but a subset of X.
Example 1.1.1 Define R on the unit interval [0, 1] by zRy if and only if y = z2.
Then R is a binary relation on [0,1]. In general, let f : [0,1] — [0, 1] be a unary
function. Then the graph R = {(z, f(z)) | z € [0,1]} of f is a binary relation on
[0,1]. More generally, let f: X™ — X be an n-ary function on X. Then the graph
R={(z1,"  ,@n, f(z1," + ,2n)) | (z1, - ,Zn) € X"} is an (n+ 1)-ary relation on
X. But an (n+ 1)-ary relation on X is not necessarily a graph of an n-ary function
on X. For instance, define on [0,1] zRy if and only if z < y, then R is a binary
relation on [0, 1], which, however, is not a graph of any function on [0, 1].
Definition 1.1.2 Let X be a non-void set, and < a binary relation on X. Then
~ is called a preorder if it satisfies the following two conditions:

(iz<z (ze€X)

(i) x < y and y < z imply z < 2z (z,y,z € X).
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The ordered pair (X, <) is called a preordered set . These conditions are referred
to (i) and (ii), respectively, as reflexivity and transitivity.

Example 1.1.2 (i) Let X be the set of all triangles on the Euclidean plane
R2. Denote by m(z) the area of the triangle =, and define z < y if and only if
m(z) < m(y), i.e. the area of z is not greater than that of y. Then < is a preorder
on X, and (X, <) is a preordered set.

(ii) Let P;(N) be the set of all finite subsets of the natural number set N.
Denote by |A| the number of clements of A, and define A < B if and only if
|A| < |B| (A,B € Py(N)). Then (Ps(N), <) is a preordered set.

(iii) Let R be the set of all real numbers. Denote by || the absolute value of
z, and define = < y if and only if |z| < |y| (z,y € R). Then (R, <) is a preordered
set.

1.1.2 Partially ordered sets

Definition 1.1.3 Let (P, <) be a preordered set. < is called a partial order
if it satisfies, besides the reflexivity and the transitivity, the condition of anti-
symmetry, i.e.

z <y and y <z imply z=y.

The ordered pair (P, <) is called a partially ordered set (poset, for short).
‘z <y’ is read as ‘z is less than or equal to y’, or ‘y is larger than or equal to x’.
If either z < y or y < = holds for each z,y € P, then (P, <) is called a totally
ordered set, also called a linearly ordered set.

Example 1.1.3 (i) None of the three preordered sets given in Example 1.1.2 is
a poset.

(ii) Let P be the set of all triangles on the Euclidean plane R2. For every
triangle z,y € P, define z < y if and only if  is contained in y, then (P, <) is a
poset. More generally, let P(X) be the powerset of X, for all subsets A and B of
X, define A < B if and only if A C B. Then (P(X),C) is a poset, where A C B
means that every element of A is also an clement of B.

(iii) Let Cjo,1) be the set of all continuous functions defined on [0,1]. For every
f.g € Cjoay, define f < g if and only if f(z) < g(z) for every x € [0,1]. Then
(Clo,1), =) is a poset.

(iv) Let < be the natural order on R. Then (R, <) is a poset, and is also a
totally ordered set. Furthermore, let C be the set of all complex numbers. Define
a+bi < c+diif and only if a < ¢ or a = ¢ and b < d, then (C, <) is a totally
ordered set. However, if define a + bi < ¢ + di if and only if « < ¢ and b < d, then
(C, <) is only a poset, but not totally ordered.
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(v) In Figure 1.1.1 below, let P be a set of elements represented by black points
of the Euclidean plane R?, and let the element corresponding to the lower vertex
of a line segment be less than or equal to that corresponding to the other vertex
as well as itself. Then the P’s in (a) to (e) are all posets.

A <> @ @

(a) (b)

Figure 1.1.1

From now on, we denote by < the order < on a poset P.

1.1.3 Supremum and infimum

Definition 1.1.4 Let (P, <) be a poset, X C P,a € P. The element a is called
a(n) lower (upper) bound of X if a < z (z < a) for every x € X. Let a be a(n)
lower (upper) bound. a is called the infimum (supremum) of X if b < a (a < b)
for each lower (upper) bound b of X. In this case, we write a = inf X (a = sup X)
or a=AX(a=VX).

Example 1.1.4 (i) For the poset P in Figure 1.1.1(a), the subset {a,b} has the
infimum ¢, but it has no upper bounds. For the P in Figure 1.1.1(b), the supremum
and the infimum of the subset {a, b, ¢} are a and ¢, respectively. For the P in Figure
1.1.1(e), X = {a,b,c} has the infimum 0, and two upper bounds d and ¢, but it
has no supremum.

(ii) In the poset (P(X),C), let {A4; | i € I} C P(X). Then the supremum
of {A; | 7 € I} as well as its infimum does exist, they are the set-union and the
set-intersection of {A; | i € I}, respectively, i.e. sup{A; | i € I} = |J A;, and
1nf{A|l€I}~ﬂA <!

(iii) In the pObet (Clo. 1],\) let X = {h | h(z) = z",n = 1,2,---}. Then
sup X = f, where f(z) = z(z € [0,1]), and inf X = g, where g(z) = 0(z € [0, 1]).
If we give up the continuity, then the equation sup X = f still holds, whereas the
inf X is defined by (inf X)(1) = 1 and (inf X)(z) = 0 for = € [0,1). Moreover, let
Y = {m | m € Z}, where m is a constant function with value m on [0, 1]. Then
neither the lower bound nor the upper bound exists.

(iv) Let P = [0,1], < the natural order on P, and X the empty set of . Then
sup X = 0 and inf X = 1. The reason is that the empty set takes every element of
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P as its lower (upper) bound, and hence the supremum as the least upper bound
is 0 and the infimum as the greatest lower bound is 1 (note that the condition ‘for
any z € @,z < a(a < z)’ holds for every element a € P).

1.1.4 Directed sets

Definition 1.1.5 A subset Y of a preordered set (X, <) is called a directed
subset if for every element a,b € Y, there exists ¢ € Y such that a < cand b <c.
In particular, (X, <) is said to be directed if Y = X.

Example 1.1.5 (i) The three preordered sets given in Example 1.1.2, and the
posets in Example 1.1.3 (ii), (iii) and (iv) as well as those in Example 1.1.4 (ii),(iii)
and (iv) are all directed.

(ii) Every poset having a greatest element is directed, so is every totally ordered
set.

(iii) Consider the poset (P, <) in Example 1.1.3(ii). Suppose that X is the set
of all triangles contained in the unit circle with the origin of the Euclidean plane
as its center. Then X is not a directed subset of P. Indeed, take a diameter of the
unit circle as the base side and two points on the circle but not on the diameter
to construct two triangles. Then there are no triangles inside the unit circle which
are larger than or equal to these two triangles simultaneously.

(iv) Let X be an infinite set, and Pf(X) the set of all finite subsets of X. Then
(P#(X), C) is directed.

(v) Let X be a nonempty set, F(X) the set of all fuzzy subsets of X, i.e.
F(X) ={f| f: X — [0,1] is a function}, and the order on F(X) defined
pointwisely, i.e. f < g if and only if f(z) < g(z) for every z € X. Then [F(X), <]
is a poset. Let F(X) be the set of fuzzy sets such that the membership degree
of each element z € X is strictly less than 1 [i.e. f(z) < 1 for every z € X].
Then [F<(X), <] is a directed subset of F(X). Let Fo(X) be the set of fuzzy sets
such that the membership degrees of at most finite elements of X are not 0. Then
[Fo(X), <] is a directed subset of F(X).

Exercise 1.1

1. Give two examples of preordered sets which are not posets.
2. Let (U, C) be the poset generated by the set of all open sets of the real line

R under the set-inclusion order, and

X:{(——2—%,2+%) In:1,2,~-}.

Find sup X and inf X. More generally, let A be a collection of open sets. Do the
equations sup A = U{A | A € A} and inf A =N{A | A € A} hold?
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3. Give an example of a directed poset which has no greatest element and is
not totally ordered.

1.2 Lattices
1.2.1 Lattices

Definition 1.2.1 Let (L,<) be a poset. (L,<) is called a lattice if both
sup{a, b} and inf{a,b} exist for all a,b € L. sup{a,b} and inf{a,b} are often de-
noted by a V b and a A b, respectively.

It is easy to check the following proposition, hence it is left as an exercise for
the reader.
Proposition 1.2.1 Let (L, <) be a lattice. Then:

(i) Let X be a non-void finite subset of L. Then both sup X and inf X exist.

(ii)avb=bVa,aAnb=bAa. .

(iii) (avbd)Ve=aV (bVc),an(bAc)= (anb)Ac.

(iv)a< bifand only if a Vb= b if and only if a A b = a.
Definition 1.2.2 Let (L, <) be a poset. (L, <) is said to be complete if both
sup X and inf X exist for all subsets X C L.

Every complete lattice (L, <) has a greatest element sup L, denoted by 1, and
a least element sup @, denoted by 0,. We often write 1 and 0 in place of 1; and
0r, respectively, if no confusion arises.
Example 1.2.1 (i) (R,<) is a lattice which is not complete. ([0,1],<) is a
complete lattice. More generally, every totally ordered set is necessarily a lattice
because the infimum (supremum) of a and b is the smaller (greater) one of a and
b. In particular, the totally ordered set {0,1} of two elements 0 and 1 is a lattice.

(ii) Both (P(X),C) and (F(X), <) are complete lattices.

(iii) Every lattice (L, <) with a finite non empty underlying set L is complete.

(iv) The posets given in Figure 1.1.1 (b),(c) and (d) are lattices with finite
underlying sets, and therefore are complete.

1.2.2 Distributive lattices

Definition 1.2.3 Let (L, <) be a lattice. (L, <) is said to be distributive if
it satisfies the distributive laws:

ah(bVe)=(aAb)V{aAc), (1.2.1)

aV(ibnre)=(aVvb)A{aVc), (1.2.2)

for all a,b,c € L.
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Before giving examples of distributive lattices, we prove several commonly used
propositions.
Proposition 1.2.2 Let (L, <) be a lattice. If onc of the identities (1.2.1) and
(1.2.2) holds, then so does the other one, and therefore (L, ) is distributive.
Proof Assume that the identity (1.2.1) holds. Indeed, since a < aVb,anc<a,
it follows from Proposition 1.2.1(iv) that (aVb) Aa =a and a V (a A c) = a. Then
by (1.2.1),
(avb)A(aVe)=((aVb)Aa)V ((aVb)Ac)

=aV ((aVb)Ac)

—aV(ane)V(bAc)

=aV (bAc).
This shows that (1.2.2) holds. By duality, (1.2.2) implies (1.2.1) too. Ol
Proposition 1.2.3  Let {(Li,<:) | i € I} be a collection of preordered sets,
I # @. Let L = [] Li be the Cartesian product of L;s. Define on L

el

(ai)ier < (bi)ier if and only if, for every i € I.a; <;b;. (1.2.3)

Then:

(i) (L, <) is a preordered set.

(ii) If every (L;, <;) is a poset, then so is (L, <).

(iii) If every (L;, <;) is a (complete) lattice, then so is (L,=).

(iv) If every (L;, <) is distributive, then so is (L, =).
Proof (i) and (ii) trivially hold. Let (L;, <;) be a lattice, i € I, and (ai)icr and
(b;)ic1 two elements of L. Then it follows from (1.2.3) that

(ai)ier V (bi)icr = (ai V bi)ier, (1.2.4)

(ai)ict A (bi)ier = (a:s Abi)ier- (1.2.5)
Thus (L, <) is a lattice. In a similar way one can check that (L, <) is complete
whenever each (L, <;) is complete (i € I). Therefore (iii) holds. Lastly, let (L;, <:)
be distributive for each i € I. Then it follows from (1.2.4) and (1.2.5) that
(a)ier A ((bi)ier V (ci)ier) = (ai A (bi V ¢i))ier

= ((O,L AN bz) \Y (ai N Ci))ie]

= (ai Abi)ier V (ai A ci)icr

= ((ai)ier A (bi)ier) V ((a)ier A (ci)ier)-

This shows that (iv) is true. The proof is complete. O
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Proposition 1.2.4  Every totally ordered set is a distributive lattice.

Proof Let (L, <) be a totally ordered set. For a,b,c € L, without loss of gener-

ality, we can assume that a < b < ¢. Then it follows from a A (bVe) =aAc=a

and (aAb)V(aAc)=aVa=athat (1.2.1) holds. Therefore (L, <) is distributive.
O

Example 1.2.2 (i) Both (R, <) and ([0, 1], €) are distributive lattices.

(i) (F(X),<) is a distributive lattice. Indeed, F(X) = [[ L;, where L; =
[0,1],# € X. By Example 1.1.5(v), < is just the pointwise fr)((ier as defined in
Proposition 1.2.3. Hence (F(X), <) is distributive.

(ii) (P(X), C) is distributive, i.e.

{AH(BUC)=(AQB)U(AOC% (1.2.6)

AU(BNC)=(AUB)N(AUC).

Let us limit ourselves to the first identity, in a similar way we can show the second
one. £ € AN(BUC) if and only if z € A and either z € B or z € C if and only if
eitherz € Aandz € Bjorz € Aandz € C, ie. x € (ANB)U(ANC). Therefore
(P(X), Q) is distributive.

(iv) In Figure 1.1.1, both the posets (b) and (c) are distributive lattices, but
(d) is not. Indeed, a A (bVc) = aAl = a, whereas (aAb)V(aAc)=0V0=0+#a,
hence (1.2.1) does not hold.

1.2.3 Infinite distributive laws

Definition 1.2.4 Let (L, <) be a complete lattice. Then the following identities
(1.2.7) and (1.2.8) are called the first infinite distributive law and the second
infinite distributive law, respectively:

aA (V bi) = \/(a/\ b;), (1.2.7)

icl iel

aVv (/\ bi) = N(avb). (1.2.8)

i€l el
Example 1.2.3 (i) It is straightforward to check that (P(X), C) satisfies the
first and the second infinite distributive laws.

(i1) (F(X), <) also satisfies the first and the second infinite distributive laws.
Since every totally ordered set which is complete satisfies the first and the second
infinite distributive laws, similarly to the proof of Proposition 1.2.3, one can show
that (F(X), <) satisfies these two infinite distributive laws too.



