SECTION 7

STEADY UNIFORM FLOW IN OPEN CHANNELS

Reference to Sec. 3 will show that the conditions specified in
the titie of this section require that the discharge in the channel
be constant with respect to time and that the cross-sectional
- area remain the same from place o place in the channel. For
subcritieal flow (p. 8-38), this condition can exist throughout
the full length of the channel only if the vutlet end of the channel
is controlled so that there will be.no drawdown or backwater.
For supercritical flow, uniform flow can occur throughout the
channel only if the water enters the channel at the uniform-flow
depth from a pressure chamber and if no obstruction cxists at
the outlet end of the channel. Strictly speaking, this type of
flow can occur only in parallel-walled channels, thus precluding
all natural stresms. Practically speaking, however, there are
often reaches of natural streams in whieh flow is nearly uniform,
and in many cases 8ow can be considered as steady in rivers
for short time intervals.

The principles governing the relationship between depth
slope and discharge for uniform flow depend entirely on the
rate of energy dissipation due to friction. Consequently, this
seciion deals entirely with this aspect of flow in spen channels.
However, because the rate of energy dissipation for gradually
varied flow (p. 8-36) depends on the same variables ag in the
cage of uniform flow, the material presented here will also be
uged in Sec. 8. The problems involved in steady nonuniform
flow are discussed in Secs. 8 and 9, and unsteady flow in open
channels is treated in Sevs. 10 and 11. v

Elements of a Cross Section. The more important elements
of eross sections, together with the symbols that will be used
to designate them, are as follows:

The agrea u slways means the cross-sectional area of the
stream.

7-1
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The wetted perimeler p is the length of the line of intersection
of the plane of the cross section with the wetted surface of the
channel, the line abe (Fig. 7-1).

The hydraviic radius v = a/p is the area divided by the
wetted perimeter.

The depth D (Fig. 7-1), if not specified otherwise, refers to the
maximum depth of water in the cross section.

The top width T (Fig. 7-1) is the term used to designate the
width of cross section at the
water surface.

The mean depth Dy, = a/T is
the area of cross section divided
by the top width. This term
will be applied generally to all
sections, but it is not literally
descriptive of channels with
F1a. 7-1. Cross section of open overhanging sides, such as cir-
channel. cular conduits flowing more

than half full.

The depth to center of gravity § (Fig. 7-1) is the depth to the
center of gravity of the eross section of the stream.

The above terms and symbols are all used in the discussions
and formulas contained in this and the following section. The
hydraulic radius enters into formulas involving velocity or
discharge. The mean depth occurs in the criterion for indicat-
ing when flow in a channel is at eritical depth (p. 8-8). The
depth to center of gravity of a cross section is employed in
determining hydrostatic pressures in problems involving sudden
changes in depth of flow.

Sectional Forms. Most of the sectional forms used for open
channels are shown in Fig. 7-2. It is convenient to have tables
which facilitate the determination of numerical values of the
elements of a cross section. The equations used in deriving
these tables are shown for trapezoidal sections only, Similar
equations were derived and used for developing the tables for
circular and parabolic sections.

The trapezoidal section (Fig. 7-2a) is always used for earth
canals. Ordinary earth sections have relatively flat side slopes,
usually not steeper than 1:1 in cut and 114:1 in fill. In rock,
hardpan, or other incurated material and for lined canals,
trapezoidal sections with very steep side slopes are often
employed. It is not uncommon to have different side slopes on
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the two sides of a canal. Often the uphill side of an earth
canal will have a steeper slope than the downhill side.

As indicated in Fig. 7-2a, D is the maximum depth of water
and b is the bottom width of the canal. The area of the

T e T B s

(c) Triangular (d) Circular (e) Parabolic
¥1g. 7-2. SBimple forms of channel gections.

trapezoidal section is

a.=¢D + bD (7-1)
and letting

e=5 (7-2)
and '

x = —?— (7-3)
then

a=(s+ DES (7-4)
The wetted perimeter is

p =b + 2er + D% (7-5)

or substituting for b and e ag above,

p = [% + 202t + 1)%] D (7-6)
Then
[ 1/z 4+ 2
p {1/ + 2(2* + 1)¥]
Values of C, as functions of z and z are presented in Table 7-1.
The top width is

Z’;b+2e=(}c+2z)1) (7-8)

r = D =C.D (7-7
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Then the expression for mean depth becomes

a _ 1/z 4+ 2
T 1/z2+422

Values of (' in terms of z and zx are given in Table 7-2. The
distance down from the water surface to the center of gravity
is obtained by taking momenta as follows:

D

3

Substituting for &, b, and e, using Eqgs. (7-4), (7-3), and (7-2),

respectively,
1/2z + 2/3
z 4+ 1/x

Values of C; are given in Table 7-3.

If the slopes of the two sides of the channel are different, an
average value of z used in Egs. (7-4), (7-9), and (7-10) will give
correct values of g, D, and 7, respectively, but Eq. (7-7), used
with an average z, will not give exact valuesof ». For example,
if D=25, b =10, and z = 1 and 2; from Table 7-1, using z
(average) = 1.5, then r = 3,12, while the correct result is
3.10. For smaller differences in ¢, the error will be relatively
less. The values corresponding to an average z obtained from
Table 7-1 will usually therefore be within 1 per cent of the
correct result.

The rectangular section and trigangular section are special cases
of the traperoidal section. The former hasz = 0, and the istter
has b =~ . The rectangular section (Fig. 7-2b) is used for
wooden Sumes and for varicus types of lined conduits. Tri-
angular cross sections {Fig. 7-2¢) are seldom encountered, but
channeig of this form have interesting hydraulic properties.

For the rectangular section, a = bd, r = bd/(b + 2d),

D
¥=3

Dy = D =C.D (7-9)

aj =bD-22+aD

= CpD (7-10}

and D, = D. For the trinngular section, g = zD?3,

r=2 i¥R

7 = D/3,and Dy = D/2. lu Table 7-1, the first column gives
C. [Eq. (7-7)] for rectangular sections, and the bottom row
gives this factor for triangular sections.
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Circular conduits, designed to flow partially full under normai
operating conditions, are commonly used for sewers and drains
and for other purposes where underground channels are
required. Semicircular sections are sometimes employed for
flumes and lined canals.

As indicated in Fig. 7-2d, D is the maximum depth of a
partially filled circular conduit, and d is the diameter. The
area of the section varies as C.d? and the other elements as Cd,
C in each case being a function of D/d. Tables of values of ¢
are as follows: for determining the area @, Table 7-4; for deter-
mining the hydraulic radius r, Table 7-5; for determining the
top width T, Table 7-6; for determining the mean depth D,
Table 7-7; for determining the depthto center of gravity 7,
Table 7-8.

The parabolic section (Fig. 7-2e) is occasionally used for lined
channels, and it approximates the form assumed by many
natural streams and old earth canals. The hydraulic features
of parabolic channels are interesting. The equation of the
section shown in Fig. 7-2¢ in terms of z and y coordinates is
z?* = ky, in which & = 10. A parabolic section can be defined
in terms of the top width T and maximum depth D. Then, if
14T and D are substituted, respectively, for z and y in the
general equation, k can be determined, and the equation can
be used to locate other points of the section.

The area of a parabolic cross section is a = 34TD. The
bydrsulic radiue is r = C.D, where C, is the factor, varying
with D/T, given in Table 7-9. The mean depth D, = 24D,
and the depth fo center of gravity § = 3€D.

Most Efficient Channel Section. Considered purely from
the standpoint of the hydraulics of a channel, it can be seen
from the Manning equation [Eq. (7-35)} that for a given area
the most efficient channel will be the one with the minimum
wetted perimcter. Therefore, if in the expression for the wetted
perimeter given by Eq. (7-6) the depth is replaced in terms of
a, 2z, and z from Lq. (7-4), p can be differentiated first with
respect to £ and then with respect to z. The first operation
vields the following expression:

1ol oo+ 1)m =g (7-11)
z D
which yields the best ratio b/D for any z. The second differ-
entiation gives z = 1/+/3, which, when substituted in Eq.
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(7-11), gives b/D = 2/+/3, thus showing that the mest effi-
cient trapezoidal section is a half hexagon. The most efficient
rectangular section is that for which b/D = 2, as shown by
letting 2z = 0 in Eq. (7-11). It may be seen from Eq. (7-11)
that for flat side slopes, as would be used in earth canals, the
most efficient sections have small bottom widths. All cross
sections which satisfy Eq. (7-11) have forms such that semi-

(a) Most efficient section
erea of ﬁate{?;fcﬁon

X!
perhn fi T4 cuyd

(b) Section commonly used '
Area of water séction 156 sq.ft.
Excavation 6.03 cu.vd. per lin.ft.

F1a. 7-3. Trapeszoidal canal sections. Data for both sections:

@ = 300 cu ft per sec

z= 15t01

n = 0.0225 Freeboard = 2 ft

s = 0.000134

Slope of ground = 20 per cent

Top of embankment = 8 ft
circles can be inscribed in them and the most efficient open-
channel cross-sectional shape of all is a semicircle. Steep-sided
parabolas also have a high efficiency. _

Not only does Eq. (7-11) give the channel with the smallest
wetted perimeter for a given area, but it therefore also gives
the channel which provides a given discharge with the minimum
area. Therefore the section determined from Eq. (7-11) wili
be the most economical section to build in so far as both excava-
tion and canal lining are concerned. However, earth canals
may involve other considerations, such as construction diffi-
culties or maintenance problems, which make it desirable to
depart from the ideal section.

Two earth-canal sections with balanced ecut and fill are illus-
trated in Fig. 7-3. Each has the same capacity, 300 sec-ft,
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" ‘and all conditions except the ratio of depth to bottom width and
area of section are the same for each. Figure 7-3¢ is the
theoretically most efficient section, while Fig. 7-3b has dimen-
sions approximating those commonly employed for canals of
this capacity. For the indicated ground slope, 20 per cent,
there will be about 5 per cent more excavation in section b
than in @, but the former section will be easier to construct and .
maintain' than thelatter. For canals in flatter country the
difference in excayation for the two sections will be relatively
less than that indicated in the figure. As the ground slope
increases, the excavation saved by using the more efficient sec-
tion increases.
Energy Losses in Open Channels. As in pipes, the energy

losses are of two types, those due to friction and those due to

2 2
v, Energy " a2

[ h
29 gradient 29
ﬁ%ﬂ;ﬂi £

Dy WO?ersU'foce &

.__‘%J’\ 2
b %o S—

Z, =l I3
SN AU, S

Fig. 7-4. Uniform flow.

sudden changes in the direction and magnitude of the velocity,
which are called minor losses. However, because this section
of the Handbook deals with uniform flow, only friction losses
will be discussed in this section and minor losses will be discussed
in Sec. 8.

The mechanics of uniform flow can be illustrated by first
considering laminar flow in wide channels. Thereafter turbu-
lent flow will be discussed.

As shown by Eq. (3-11) of Sec. 3, the Bernoulli equation for
an open channel takes on the following form:

2 2
21+Dl+al%=22+pz+a2%+h (7-12)

where A is the energy loss between points 1 and 2 as illustrated
in Fig. 7-4. For uniform flow the depth and velocity terms are
the same at all points, so that Eq. (7-12) reduces to

2y — 2 = h (7—]3)
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thus showing that the energy loss h (Fig. 7-4) is equal to the
drop in the bottom or that the energy gradient (e.g.), water
surface (w.s.), and bottom are parallel.

If the energy loss per foot of length is called s, then, for any
open channel,

s = i’! = sin 6, (7-14)

where 8, is the angle between the energy gradient and a hori-

zontal plane a.nd
h =sl (7-15)

The relation between the bottom slope s, the angle of the
bottom with the horizontal 6, !, and 2, — 23 is expressed by
the equations
e -
So _lC—O—E = tan 8 (7—16)
and

21 — 22 = 8l cos @ (7-17)

Then, from Eqs. (7-13), (7-15), (7-18), and (7-17), for uniform
Jlow only,
8 = 3,08 6 = gin 8 (7-18)

When 6 is very small, as is often the case for open channels,
cos § — 1orsin § = tan § and

8 = g8 (7-19)

Again it should be emphasized that this relation applies only
to uniform flow; in nonuniform flow the bottom slope has no
relation to s. In conclusion it may be stated that, under all
conditions, & is the energy loss per foot of length and, for open
channels with very small slopes, it may also be defined as the
slope of the energy gradient. For uniform flow, s is also the
drop in the channel per foot of length, or sin 8, and for very
small slopes; it. becomes nearly equal to the slope of the channel,
8¢ or tan 6.

Laminar Flow with a Free Surface. The law of laminar flow
with a free surface for the case of wide rectangular channels
may be developed in the same manner as for pipes. Consider
the free body of fluid shown in Fig. 7-5, having a width of 1 ft,
a length l, and a height D — y. The summation of forces 1
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the direction of flow gives
7l = wl{(D ~ y)sin 0 (7-20)

Replacing r with its value from Eq. (1-3), rearranging the terms,
and simplifying, the above

equation becomes -uo-y)san o~ lwl‘ﬁ'V‘ Vg
du = 25D ’(Ddy ~ ydy)
and integratxon gives
0
_wsin g i
0 8i (7) —- —' 4 C ~ Fia. 7-5. Lamivar flow in open
(7-21) channels.

The valee of € in Eq. (7-21) must be zero to satisfy the condi-
tion that ¥ = 0 when ¥ = 0. ‘The maximum velocity may be
obtained by letting y = D; then
w gin 6 D* ,
e = T (1-22)
The discharge is obtained from & summation of small elements
of discharge, utilizing the value of u from Eq. (7-21) a8 follows:

Q=/dQ=fudy—'£—§Ln~0[ (Dd -

from which
8 D= -
Q=25 (7-23)
and the average velocity is
- 9 =Y sin § D?
1 4 i v (7-24)
and
in 0 = 247 (7-25)
Finally, the Reynolde number Dvp/u may be introduced to give
]
sin § = E—KD- (7-26)
¥rom Eqg. (7-14),
b 73
s = ;lf = }%—5 (7-27)
and rearranging terms, ’
6 ! Ve
R s 7-28
R D2g ( )
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Letting
6
J= B (7-29)
1V )
DY (7-30)

In this form the equation resembles closely the Darey-Weisbach
equation for pipes [Eq. (6-19)], and Eq. (7-29) is the counterpart
of the similar relationship for pipes given by Eq. (6-20).
Because the Manning equation is commonly used for turbulent

010 [ T

h=f

o For Sg=0.001
o For Sp=0004
5 A For $5=0010 —
A For Sp=0060
+ All others
f "~ - S5=0.060
[ :
\U\\\
$,*0.004
7] m
0.0 |- T
5 [ i L 1 1 1.3 \ 1 1 1 1.3 i
104 5 103 5 104
NR

F1a. 7-6. fc versus Nz for the laminar and transition range.

flow in open channels, it is of interest torelate f to n. This
can be done by equating the value of s obtained from Eq. (7-30)
with its value from the Manning equation [Eq. (7-34)].
7 vy ar
D2y ~ 5208%
Because this derivation is for very wide channels, »r may be
replaced by D to obtain the following relationships:

=2 " _ n
f= oI D% — 29.1 P (7-31)
and
D%
‘f‘s?T (7-32)

Plotting log [ against log R in accordance with Eq. (7-29)
vields a straight line having a slope of —1 ag shown in Figs.
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7-6 and 7-7. Numerous tests of laminar flow in wide channels
with smooth surfaces have verified Eq. (7-29).! Hewever, for
rough surface#, the results follow trends parallel to that of
Eq. (7-29) but with a larger value of f. Such relationships can
be represented by the equation

r=2 (7:33)

In Fig. 7-6 the value of C from tests by Woo and Brater! for
the rough side of masonite is 7.7, and in Fig. 7-7 tests conducted

010 a
r‘\ \ . e For So=0.0005_
b o For S =00010
L NN N X For Sg=00015
it BN 2N\
C a\ \":
B \6‘ uoo\)’%
¢
N . %0
o\ Kpx ™4 xox
0.0l \}%\u o xtro
- \\ 2
L
5 8 i L L Lot 3.3 \ 1 i 1

10% 5 103 5
Nr

Fi16. 7-7. Variation of C with bottom slope for a sand surface.

at the Waterways Experiment Station? on ‘“‘cement’ surfaces
yield C = 7.9. Tests at the University of Michigan® with a sur-
face of glued sand having an average size of 0.04 in. gave a value
of (' of 9.8 for slopes equal to or less than 0.003. For greater
slopes, C increased consistently with s, reaching a value of
25.0 for a slope of 0.060. Tests at Vicksburg!? with movable

1 References to research on this topic, together with a more detailed dis~
cussion, are presented in D. C. Woo and E. F. Brater, Laminar Fiow in
Rough Reetangular Chanuels, J. Geophys. Res., vol. 68, p. 4207, December,
1961.

? Studies of River Bed Materials and Their Mavement, with Special
Refefence to the Lower Mississippi River, U.S. Walerways Ezpt. Sta.
Pgper 17, January, 1935,
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sand surface showed that a sand diameter of 0.0081 in. acted
like & smooth surface (C = 6.0) but that C began to increase for
a diameter of 0.019 in. All the Vicksburg tests were made with
relatively small slopes, so that no variation of C with slope
could be detected.

Data. plotted in Figs. 7-6 and 7-7 show clearly how the
relationship between f and R changes when turbulence begins.
It may be noted from Fig. 7-8 that the slope of the channel
affects the point at which turbulence begins, there being a
tendency for turbulent flow to begin at lower values of R for
steeper slopes. A review of published data! indicates that
laminar flow ceases at values of K ranging from 400 to 900.
These values appear to be consistent with those of pipes flowing
full, because the depth term used in the Reynolds number is
approximately equivalent to the hydraulic radius, and for a
pipe flowing full, r = d/4. Consequently, if values of K for
pipes were based on r instead of d, they would be one-fourth
as large and therefore the transition into turbulent fiow would
begin in about the same range of values of K as shown here.

The relationships derived and discussed here are for rec-
tangular channels which ars sufficiently wide so that the effects
of the side wall will be negligible. Based on an analytical
expression for laminar flow in rectangular conduits first pre-
sented by Boussinesq,? it can be shown? that the theoretical
value of C in Eq. (7-33) varies with the ratio of the width to
the depth, b/D, according to the following tabulation:

/D o4
™ 6.0
60 6.2
10 8.8

5 8.0

Laminar flow in channels other than rectangular has been
investigated by Straub, Silberman, and Nelson.*

Turbulent Flow in Open Chanrels. It is quite probable that
future research and analysis will lead to the development of

1 Weo and Brater, op. cit.

3 M. J. Boussinesy, Memoire sur l'influence des frottcments dans les
mouvements régulicrs des fluides, J. Math. Pures et Appl., ser. IL, xiii,
p. 377, 1868.

3 Woo and Brater, op. ctl.

41, G. Btraub, E. Silberman, and H. C, Nelson, Open-channel Flow at
Small Reynolds Numbers, T'rans. ASCE, voi. 123, p. 885, 1958.
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methods of determining energy losses in open channels in the
transitional and turbulent ranges similar to those now being
used for pipes. However, because of the varying depth and
the variety of shapes used for open channels, the problem is
exceedingly difficult. Fortunately, most practical problems
fall in the fully turbulent range, where the Manning equation
gives satisfactory results. The historical relation of the
Manning equation to the Chezy equation, together with the
gignificance of the numerical value 1.486, was discussed in the
section on pipes (pp. 6-12-6-17).

" The Manning equation as usually writien is

_ 1486
n

1 4 riigh (734)

where r is the hydraulic radius, defined on page 7-2, and s is
defined on page 7-8. If both sides of Eq. (7-34) are multiplied
by the ares and at the same time r is replaced with a/p, the
Manning equation becomes

1.486 a%:
Q=255 (7-35)

This equation is cumbersome to use, and when solving for a
channel dimension with Q and s known, it requires a trial
solution. Consequently, it is convenient to arrange the equa-
tion in such s form that dimensionless constants can be pro-
vided in tabular form for rapid solution. The method of
arranging the equation will be shown only for trapezoidal
channels. Similar procedures were employed in deriving the
tables for circular and parabolic channels.

Trapezoidal Channels. The values of a and p from Eqs. (7-4)
and (7-6), respectively, are substituted into Eq. (7-35). Then

1.486(z 4 1/2)3 Djs¥

Rl (e pe R o7 R (7-36)
and letting
_ _1.486(z + 1/z)% :
K =07 + 26 + g (7-87)
the Manning equation ean be written
Q= K D3s¥ (7-38)

n
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where K = f(z, z); or, replacing D in Eq. (7-38) with bz from
Eq. (7-3),

Kzb%shh
Q=_“n

or
Q=

where K’ = Kz% = fi(2, z).

Tabulations of data relating K and K’ to z and x are pre-
sented in Tables 7-10 and 7-11, respectively. They cover all -
symmetrical trapezoidal channels, including rectangular and
triangular channels. They permit the direct solution for D or
b if the other is known, thus eliminating a solution by trial.

The computation of gradually varied flow profiles requires
the solution for s in the Manning equation [Eq. (7-49)]. This
solution of the Manning equation involves the term (1/K’)2.
Consequently, a table relating (1/K’)? to z and z is presented,
Table 7:12. The eight-thirds and three-eighths powers of num-
bers may be obtained from Tables 7-19 and 7-20, respectively.

For circular channels flowing part full (Fig. 7-2d), the discharge
factor for use in formula (7-38) is

. — N %
1.486 gﬁ—g-s—o-—gz 4 ‘é sin 9)

58 ﬂ__" .,)%

where x = D/d = ratio of depth of water to diameter of channel
and @ is the angle between the radii subtending the water
surface. Since @ is a function of z, there is in reality only one
variable in the right-hand member of this equation. Table
7-13 contains values of K for different values of -D/d.

By replacing D with zd, the following equation is obtained
for eircular sections:

p¥is¥s
KoHah b:’ (7-39)

K = (7-40)

K'd¥s¥t
=22

where K’ = f(z). Values of K’ are given in Table 7-14.
The corresponding discharge factor for parabolic channels
(Fig. 7-2¢) is
K =

(7-41)

1.2
z [\/10:1:’ + 14 Zla-:log,(mxz +1+4+ 4:-,)]

where z = D/T = ratio of Jdepth of water to top width of
channel. Table 7-15 contains values of K corresponding to
different values of D/T.

% (7-42)
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By replacing D with z7, the following form of the Manning

equation is obtained for parabolic sections:
0= K’ T%g%4 (7-43)
~n .

where K’ = f(z). Values of K’ are given in Table 7-16.

Solution of Problems by the Manning Equation. For chan-
nels of irregular shape or for forms not included m Fig. 7-2,
Eqs. (7-34) and (7-35) must be used. Solutions are facilitated
by the use of tables. Values of r are given in Table 7-1. Table
7-17 gives the square roots of decimal numbers, and the two-
thirds powers of numbers may be obtained from Table 7-18.

The discharge of channels having any of the sectional forms
shown in Fig. 7-2 can be determined from Eq. (7-38):

KD%shs

Q=— (7-38)

or from the following equation:
Q= -I-{n—, (b, d, or T)3ss¥ (7-44)
Transposed into other forms, these formuias are, respectively,
D= (?Q:_% # (7-45)
3 = Kgﬁng) (7-48)
K= I—,?—Z;-g (7-47)
bd,orT = (K'sbé)% (7-48)
(K'b% d% or 7%)2 (7-49)
K’ (7-50)

b% d% or T5%s%

The above formulas provide for a simple and direct solution
of problems involving discharge. They are to be solved with
the aid of Tables 7-10 to 7-16. It is not necessary to determine
either the area or the hydraulic radius since both are included
in the discharge factor. To use these formulas, excepting
(7-47) and (7-50), = = B/b or D/d or D/T must be known and
K or K’ can then be taken from the appropriate table at the
end of this section.
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If discharge is the quantity sought, it can be determined from
either formula (7-38) or (7-44), each formula providing an
independent check on the other. If z is known or assumed,
D can be obtained from formula (7-43), or if preferred, b, d, or
T can be obtained from formula (7-48), the results by the two
formulas checking each other. Either formula (7-46) or (7-49)
will be found convenient for computing 8. For determining s
in rectangular and trapezoidal channels by formula (7-49),
Table 7-12, giving values of (1/K’)?, will be most convenient.
The use of this table for computations involving nonuniform
flow is described on page 8-39. If the depth at which water
will flow in a channel of given dimensions is required, it can
best be obtained with the aid of formula (7-50) by determining
K’ and then from the appropriate table selecting the correspond-
ing value of z. Then D = zb, zd, or T, depending on the
channel form. Similarly, if D is knewn and the other dimen-
sion unknown, it can be determined by the use of formula (7-47).
Values of the eight-thirds powers and three-eighths powers of
numbers are given in Tables 7-19 and 7-20, respectively.

A more general representation of the discharge equation,
embracing both formulas (7-38) and (7-44), is

Q=L D (7-51)

where F is either K or K', and L is a linear dimension, cither
£,8,d,or T. The sectional form of the chaanel, together with
the type of problem, mwdicates the dimension to be used in the
formula aud the tabie from which F is to be selected.

Forruula (7-51) also can be written

n\3% 1 o
- ()

Using this formula, the author hag published iu a separate vol-
ume a table which gives the dimension L in feet corresponding
to different rates of loss of head for values of @n/F that cover
the entire range of conditions likely to be encountered in engi-
neering practice. Values of £ (X and XK', pp. 7-13 to 7-13) for
the different chabnel forms and a simple description of methods
to be employed in the solution of various open-channei problems
are also inecluded.

Roughness Coefficients. Values of n to be used in the
Manning equation are given in the following tabie. Many of
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Values of 1 to Be Used with the Manning Equation

Surfsce Best Good | Fair | Bad

Uncoated east-iron pipe............... 0.012 10.013 10.014 0.018
Cosated cast-iron pxg;e ................. 0.011 10.0:12* 10.013*
Commercial wrought-iron pipe, black.. 0.012 10.013 0.014 0.015
Commerom) wroughbiron plpe, galva-

miged ... L . 0.012 0.034 [0.01% [0 017
Smooeh brass and glass pipe .......... 0.009 {0.010 [0.011 [0.013
Smooth lockbar and welded “OD” pipe{ 0.010 {C.01i* {0.013*
Rivetod and spiral atesl pipe........... 0.013 |0.015* {0.017°
Vitrified sewer PiPs................... 0019 }o.013% Jo.015 [o.017
Common clay drainage tile. . .....] 0.011 "{0.012* |0.014° |0.017
Glazed brickwork.................... 0.011 |0.012 [0.013* [0.016
Brick in cernent mortar; brick sewers...| 0.012 10.013 [0.015* |0.017
Neat cement surfaces................. 0.010 |0.011 [0.012 {0.013
Cement morter gurfaces. ... ... . .. .. 0.011 10.012 {0.013* i0.015
Coneretapipe. ...................... 0.012 0.013 j0.05° |0.018
Wood stave pipe. . 0.010 [0.011 (0.01% |v.013
Plank Flumes:

Planed. . 0.016 {0.012* 10.013 }0.014
Unplaned. 0.011 {0.013* 10.014 |0.015
With batt. .. 6.G12 {0.015* {0.016

Concrete-lined channels 0.012 |0.014°* j0.016* {0.018
Cement-rubble surface. 0.017 10.020 0.025 ;0.030
Dry-rubble surface. . ... 0.025 10.03C¢ 10.033 ]0.035
Dressed-sshiar surfsce.. ... ...l 0.013 {0.014 [0.015 {0.017
Semicircular metal filumes, smnoth. . ... .011 {0.012 [0.013 !0.015
Semiciroular motal flumes, corrugated. .| 0.0225 [0.025 [0.0275 |0.030
Canals and Ditches:
Earth, straight and uniformi......... 0.017 10.020 [0.0225%0.025
Rock cuts, sinooth and uniferm...... 0.025 [0.030 }0.033* !0.035
Rook cuts, jagged and irreguler...... 0.0356 {0.040 }{0.045
Winding sluggish canals............. 0.9225 10.025* 10.0275 {0.030
Dred earik channels. ... ... .. 0.025 10.0275%{0.030 0.033
umfs with rough stony beds, weeds
on earth banks. . ................ 0.025 1(0.020 10.035* ;0.040
Earth bottom, rubble sidas.......... 0.028 10.030* 10.033* 10.035
Naturs] Stream Chaunels:
(1) Clean, straight bnnL futl stage, no
rifts or decp pools. ... ... .. ... . 0.625 0.0275 ;©.93¢ 9.023
(2) Same as (f), but some wecds and
SLONES. .. oovnen e e ¢.030 0.633 0.035 0.040
r3) Wmd.mb, some pools and shoals,
........................... 0.033 [0.035 {0,040 {0.045
(4) Same 28 (3), lower stages, more
ineffective slope and sectiona.. 0.040 [0.045 10.60H0 |D.055
(5) Sama as (3), some weeds “and
......................... 0.035 10.040 :0.045 10.050
(6\ Same as (4), stony zections.. C.045 10.050 [C.055 [0.060
(7} Sluggish river reaches, rather
weedy or with very deep pools.. 0.050 |0.080 10.070 |0.0R0
(8) Very weedy reaches. . ... ... ... .. 0.075 10.100 0.125 ;0.150

* Values commonly used in dosigning.



