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The Magnetic Field

1. Historical

The writings of Thales, the Greek, establish that the power of loadstone,
or magnetite, to attract iron was known at least as long ago as 600 B.c. It
has been claimed that the Chinese used the compass sometime before
2500 B.c. That magnetite can induce iron to acquire attractive powers,
or to become magnetic, was mentioned by Socrates. Thus permanent
and induced magnetism represent two of man’s earliest scientific discoveries.
However, the only real interest in magnetism in antiquity appears to be
concerned with its use in the construction of the compass. For example,
it is illuminating that it was not until many centuries later that Gilbert
(1540-1603) realized that the earth was a huge magnet, even though the
operation of the compass depends on this very fact.

The discovery of two regions called magnetic poles, or sometimes just
“poles,” which attracted a piece of iron more strongly than the rest of the
magnetite, was made by P. Peregrines about 1269 A.p. Coulomb (1736~
1806), in accurate quantitative experiments with the torsion balance,
investigated the forces between magnetic poles of long thin steel rods.
His results form the starting point of this treatise on magnetism.

2. The Magnetic Field Vector H

Coulomb found that there were two types of poles, now called positive
or north, and negative, or south. Like poles repel one another and unlike




2 THE MAGNETIC FIELD

poles attract one another. This force of attraction or repulsion is pro-
portional to the product of the strength of the poles and inversely pro-
portional to the square of the distance between them. This is Coulomb’s
law, which can be stated mathematically as

mymy

r2

F=k

rOa (1'2.1)

where F is the force,! m, and m, the pole strengths, r the distance between
the poles, and ry a unit vector directed along r. The constant of pro-
portionality k that occurs permits a definition of pole strength. In the
cgs system of units two like poles are of unit strength if they repel each
other with a force of 1 dyne when they are 1 cm apart; that is, &k = 1.
Other systems of units and their relationship to the cgs system are
discussed in Appendix L.

It is convenient to consider F as separated into two factors. One factor
is just one of the poles, say m,, usually called the test pole. The other
factor depends on the other pole, called the source, and on the location
with respect to it; it is called the magnetic field H. This field is defined
as the force the pole exerts on a unit positive pole, or

H= gro. (1-2.2)
In addition to this use of H as the field at a point, we will employ the
same symbol H as the set of values of the magnetic field at all points:
no confusion should result, since the correct meaning will be clear from
the context. The cgs unit of magnetic field is the oersted, although the
term gauss is still frequently used. Should several poles be present,
experiments show that the field is the vector sum of the forces on the test
pole.
Instead of the vector field quantity H, it is often convenient to use a
scalar potential . The quantity ¢ is defined so that its negative gradient
is the magnetic field

H = —Vy, (1-2.3)
where the operator V is
d 0 4
V=i—+4+j—+k—.
or oy T %

Here i, j, k, are the unit vectors of a Cartesian coordinate system, and
(%, y, z) are the coordinates at the point where the field or potential is

under consideration.

! Boldface type indicates a vector quantity.
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It follows immediately that for an isolated pole
=2 (1-2.4)
r

The work done in bringing a unit test pole from infinity to the point
(2, y, ) a distance r from m is found by integrating (1-2.2) along the path.?
This turns out to be equal to ¢ and provides a simple physical meaning
of the scalar potential.

Consider the work done in taking a unit pole from point 1-to 2 in a
field H given by the line integral

J:H .ds = L IH, ds. (1-2.5)

Here ds is a line element of the path from point 1 to point 2. Now, since
H, = —0p/0s, we get

1
f H.ds = @, — ¢,. (1-2.6)
2

This integral has the same value for any path having the same first
and final point; that is, the work done is independent of the path.
Mathematically this is stated as.

§ H.ds =0, (1-2.7)

3. The Magnetization Vector M

Isolated magnetic poles have never been observed in nature, but occur
instead in pairs, one pole being positive, the other negative. Such a pair
is called a dipole. The magnetic moment of a dipole is defined as

= md, (1-3.1)

where d is a vector pointing from the negative to the positive pole and
equal in magnitude to the distance between the poles assumed to be
points. If d approaches zero and m increases so that g = md is a constant,
then in the limit in which d = 0 the dipole is said to be ideal.

Atomic theory has shown that the magnetic dipole moments observed
in bulk matter arise from one or two origins: one is the motion of electrons
about their atomic nucleus (orbital angular momentum) and the other is
the rotation of the electron about its own axis (spin angular momentum).

* This is the work done against the magnetic force; to compute the work done by it,
the limits of the integration are reversed.
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The nucleus itself has a magnetic moment. Except in special types of
experiments, this moment is so small that it can be neglected in the
consideration of the usual macroscopic magnetic properties of bulk
matter.

It turns out that a magnetic ficld H interacts with the electrons of an
atom in such a way that a magnetic moment is induced. This phenomenon
is called diamagnetism. Since all matter contains electrons moving in
orbits, diamagnetism occurs in all substances.

Depending on the electronic structure of an atom, it may or may not
have a permanent magnetic moment. All magnetic effects other than
diamagnetism result because of permanent atomic magnetic moments.
If the coupling between the moments of different atoms is small or zero,
the phenomenon of paramagnetism results. In the absence of an applied
field H such materials will exhibit no net magnetic moment. If the

r
+m F
a / jd
-m v F

Fig. 1-3.1. Fis the field point at which the potential produced by the dipole is calcu-
lated. F”is a point located a step d from F,

coupling between the atomic moments is very large, there are three
important classifications. If the atomic moment$ are aligned parallel,
the substance is said to be ferromagnetic. The magnetic moments may
be aligned parallel within groups, usually two. If pairs of groups are
aligned antiparallel and the atomic moments of the groups are equal, the
substance is antiferromagnetic. However, the atomic moments of the
groups may not be equal—for example, when two different elements are
present; thus when they are aligned antiparallel there is a net moment.
This phenomenon is called ferrimagnetism; some writers consider it to be
just a special case of antiferromagnetism.

Because magnetic poles occur in pairs, it is of interest to calculate the
magnetic field produced by such a combination. The dipole shown in Fig.
1-3.1 is considered to be almost but not quite ideal, so that d < r. The
potential it produces at the field point F, ¢y, is due to both the positive
and negative poles, that is,

Pr = ¢rt + @r .
Now let the point a step d from Fbe called F'. Except for sign, the potential
—m produces at F is the same +m produces at F’'. Hence

Pr = @r — 95"
= —d.Vppp'.
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Here V. indicates differentiation with respect to the field coordinate
(z, ¥, z) and not the source coordinate (z,, ¥, 2,) since

where
r=[=— )+ @ — v+ -
Now, the point source +m produces a potential at F given by

Therefore

lpF:—_- _md'V'l".
r

Now suppose the dipole to be ideal, that is, d = 0. In the limit we have

1
pp = —p-V-.
r
Since
vlo_ife=m, 0w, co9,]
r r r r r
we get
1 1 1
gp=—p-V-=—p-r=—|ucosb. (1-3.2)
r r r
~ The magnetic field Hy, is then
H, = _v(._y..vl)
r
=k, Ceor (1-3.3)
r r

For substances that have a net magnetic moment it is usual to define a
magnetization vector M as the ratio of the magnetic moment of a small
volume at some point to that volume. The size of the volume chosen
must be large enough so that a somewhat larger volume will still yield
the same result for M; in this way we ensure that atomic fluctuations are
negligible. 1f M is constant for the specimen, the material is said to be
uniformly magnetized. From the definition of M it is clear that it is also
the pole strength for a unit area perpendicular to M, that is

¢=M-n, (1-3.4)
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where o is the pole strength per unit area and n is a unit vector normal
to the surface.

Introduction of the vector M permits generalization of equation 1-3.2
for bulk material. Summing over the dipoles gives the total potential
at a point external to the specimen as

1
Pr = "Zl’-'v;

= f M.V, do, (1-3.5)
r
A special form ot Green’s theorem gives
or = 1M-nars—f1\7,-Ma‘fu (1-3.6)
v T r

or

P
o r r

where dS is an element of area. This result permits an interesting physical
interpretation to be made. The magnetic potential can be considered to

- + +
- 4+ ———l
— + — — +-
—_ _, —> ~ - -+
— - 4
—_— +
(a) (d)

Fig. 1-3.2, In (a) each arrow represents a dipole, cach with the same magnetic moment.
The uncompensated charges for this dipole distribution are shown in (b). This
illustrates the origin of volume charges for a simple case.

be due to two causes. One, the surface charge (or pole) density o, and,
two, a volume charge density p. The first of these can be easily pictured
as arising from the uncompensated ends of the dipoles that end on the
surface. The volume density may be pictured as the uncompensated
poles that arise from an inhomogenity of the distribution of the moments,
as illustrated in Fig. 1-3.2.

4. Magnetic Induction, the Vector B

The magnetic forces that must exist inside a ferro- or ferrimagnetic
medium pose some special problems. Such forces have meaning only if
it is possible to specify a method of measuring them. The approach
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adopted by Maxwell was to consider the medium as a continuum and to
make a cavity around the point at which the force on the test pole was to
be determined. However, the force per unit pole depends on the shape
of the cavity, since this force depends partly on the pole distribution
around the cavity, so that there exist an infinite number of ways that the
field could be defined. In fact, two particular cavity shapes are chosen.

The field H is defined as the ficld vector in a needle-shaped cavity with
an infinitesimally small diameter. The reason for this choice is that the
field defined in this way satisfies equation 1-2.7. The field vector obtained
when the cavity is a disk of infinitesimally small height is called the
magnetic induction B; the reason for this choice is that Maxwell’s
equation V- B = 0 is then satisfied. With the aid of Gauss’s theorem,
we can show that B and H are related by?

B = H + 47M; (1-4.1)

B is said to be in the units of gauss in the cgs system.
The magnetic flux @ is defined as the flux of the vector B through a
surface of area A; that is,

O = f B-nds. (1-4.2)

The unit of flux is called the maxwell. Thus the induction in gauss, at
some field point, is equal to the flux density, the number of maxwells
per square centimeter. The foregoing definition of flux is possible only
because V-B = 0, one of Maxwell’s equations. Often a graphical
meaning is given to the flux. It can be represented as lines or tubes
whose density is equal to B and direction is along B.
When the vectors B, H, and M are parallel, it is useful to define the

permeability x4 by

B=uH (1-4.3)
and the susceptibility y by

M = yH. (1-4.4)

The susceptibility per unit mass g, is defined as x/p, where p is the density.
The atomic or molar susceptibility y  or x,, then is found by multiplying
%, by the atomic or molecular weight. From (1-4.1) it follows immediately
that

p=14 4mry. (1-4.5)

3 A good treatment of this problem for the analogous electrical case may be found in
C. J. F. Béttcher, Theory of Electric Polarization, Elsevier Publishing Co., New York
(1952), Ch. II.
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If the magnetic vectors are not parallel, the components of B and H
relative to an arbitrarily chosen Cartesian coordinate system can be
related by the set of equations:

B, = pyH, + ppH, + p3H,,
B, = uyH, + posHy, + M,
Bz = #Sle + p32Hv + ”%Hz'

The quantities u,, are components of the permeability tensor . Similarly,
the relationship between M and H can be expressed with the aid of a
susceptibility tensor . -

It is an experimental result that y is negative for diamagnetic materials
and positive for the other types of magnetism, being very large for ferri-
and ferromagnetic substances.

The magnetization of dia-, para-, and antiferromagnetic substances
disappears if the applied field is removed. This is in contrast to the
behavior of ferro- and ferrimagnetic materials, which usually retain at
least part of their induced magnetic moment in the absence of an applied
field. For these materials the susceptibility is a function of the applied
field, the temperature, and the history of the samples. Discussion of the
temperature and field dependence of the susceptibility is left until later.

S. The Demagnetization Factor D

The field H' inside a specimen is different from the applied field H
because of the magnetization or equivalently, the poles. Consider a
ferromagnet with ellipsoidal shape in a uniform external field H. As
discussed later, the magnetization of the ellipsoidal specimen will also be
uniform. The poles that appear on the surface, indicated in Fig. 1-5.1,
produce a uniform internal field, H' — H, opposite in direction to H.
For specimens with an ellipsoidal shape it is usual to write

H =H — DM, (1-5.1)

where D is called the demagnetization factor. D depends on the geometry
of the specimen. For diamagnets F' > H; for all other magnets
H’ < H. The difference in the field #’ and H can usually be neglected
for dia- and paramagnets, but it can be very large for ferro- and ferri-
magnets. From the reasoning of Section 1-4, it can be seen that for a
disk D = 4z for the direction perpendicular to the plane of the disk.
In general the demagnetizing factor is a tensor D.
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In the easiest general case to calculate M is uniform. In equation
1-3.6,

¢=f1M.nds-f1v-Mdv, (1-5.2)
r r

the second term is zero, and the potential, and therefore the field, is due
only to the surface pole distribution. Also, in expression 1-3.5 for s M
can be taken outside the integral sign, and we have

p=—M. f vl (1-5.3)
_ r

Now —§ V(1/r) dv is the gravitational force due to a volume of uniform
unit mass density (the gravitational constant G = 1 here) or the electric
force due to a volume of unit charge density. We therefore have the

4 "{-!-)M.‘\.Sﬁ

\
Hf_H«(\
H

\ /

—
® —

(a) ()]

Fig. 1-5.1. (@) A uniformly magnetized ellipsoid and () the equivalent poles. The
uncompensated surface poles produce a uniform internal field H’ — H and an external
field that is identical to that of an equivalent dipole positioned at the ellipsoid’s center.
H is a uniform applied field.

important result that equations derived in potential theory may be used
to find ¢, next H' — H, and finally D.

It is instructive to consider the derivation of the foregoing result by a
simple physical argument.* Let ¥ be the potential due to gravitation, or
the electric charge of the body assumed of uniform density p. Now, if
the body is moved a distance —éx in the direction of z, the change of the
potential at any point will be —(d¥'/dz) 6z. Instead, if we consider the
body to be moved dz, and its original density p changed to —p, then

- —(d¥/dz) éx is the resultant potential due to the two bodies (Fig. 1-5.2).

To any element of volume, mass, or charge p dv, there will correspond
an element of the shifted body of —p dv a distance —éz away. Hence
the dipole moment of these two elements is p dv 0z, and the magnetization

1J. C. Maxwell, Treatise on Electricity and Magnetism, 3rd ed., Oxford University
Press, Oxford (1891), vol. i, P- 66. [Reprinted Dover Publications, New York (1954).]
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is p 0x. Therefore if —(d'¥/dz) 6= is the magnetic potential of the body
of magnetization p z, then —d¥/dx is the potential for a body of
magnetization p(= M).

In the volume common to the two bodies the density is effectively zero.
A shell of positive charge or density resides on one side of the matter
and one of negative on the other, each of density p cos €, ¢ being the angle

between the outward normal and the axis z.

= This then corresponds exactly to the first term of
( equation 1-5.2 and gives an immediate physical
N picture of the mathematics.

b The z-component of H — H is —(0¢/0z) =
e M (¥/82%). Therefore, for M to be uniform,
Fig. 1-5.2. Uncompen- which implies that H' is uniform, Y must be a
sated charges or poles  gyadratic function of the coordinates. From po-
for two ellipsoids of .l theory® this occurs only when the body is
opposite charge densities , Y
and a distance dz apart. bounded by a surface of second degree. The only

physically possible body is then an ellipsoid.

The derivation of the expressions for ¥ is beyond the scope of this book
and belongs to potential theory.® For completeness, and because of their
practical usefulness, some of the important formulas for the demag-
netization factor of ellipsoids of revolution are given.

We define q as the polar semiaxis and b as the equatorial semiaxis with
m = afb. Then for the prolate spheroid (m > 1)

4= m m $ _ My i
D, o — 1) {(m’ — % In [m + (m 1)7*] 1} (1-5.4)

and
Db = %(477 — Da)’ (1-55)
where D, is the demagnetization factor for a and D, along b.
In terms of the eccentricity € = 1 — (b/a)?

— ’ .
D, = 4nL=¢ )(-1— In 1t ‘) ~1. (1-5.6)
e 2¢ 1 —¢€
For the oblate spheroid (m < 1)
4rm m _1 ]
D, = ] ——— ;cos~'m 1-5.7)
. - m’[ A-m * (
or
4
D, = 4—"[1 _ =) G s:]. (1-5.8)
e €

s W. Thomson and P. G. Tait, Treatise on Natural Philosophy, 2nd ed., Vol. i, Part ii,
Cambridge University Press, Cambridge (1883).
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