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Preface

Equilibrium thermodynamics is basically concerned with the macroscopic (gross)
behaviour of systems that are subject to processes which take them from one state
of stable equilibrium to another while the system may interact energy-wise with its
environment, It treats the material within the system as a continuum by ignoring
the particulate nature of matter and the quantitization of energy. These are the
concern of statistical thermodynamics in its prediction of macroscopic behaviour
through the study of events occurring at the microscopic level. Thus, equilibrium
thermodynamics, with which this book is principally concerned, constitutes essen-
tially a study of the relations between work, heat, and the properties of systems; it
is this which makes it of great importance to the engineer, particularly in the field
of energy conversion. Not only must the engineer devise performance parameters
by which to express the actual performance of his work-producing and work-
absorbing devices, but he must also be able to establish performance criteria against
which to judge the actual measured performance. It is the science of thermo-
dynamics which enables him to do this on a rational basis.

Through the action of effects which for the present we may loosely term ‘fric-
tional’.or “dissipative’, all natural processes are in some degree thermodynamically
imperfect, termed*by the thermodynamicist ‘irreversible’. Consequently, either less
work & produced or more work absorbed in real-life plant than would be the case
in that imaginary and idylic land of the thermodynamicist which we may call
‘Thermotopia’. Here all processts are, in his language, ‘reversible’, so that there are
no such imperfections. In this context, it is worth making the point that, as do all
other scientists, thermodynamicists construct a simplified model to describe the
behaviour of the physical warld, that behaviour being of too complicated a nature
to allow every facet to be taken ifito account at a first encounter.

Because all natural processes are in some degree imperfect, (irreversible), the
engineer cannot use the results of experiments to enable him to set up his per-
formance criteria by which to judge the degree of excellence of his plant. Instead,
he is only able to call upon the resources of the human intellect through the
rational application of scientific thought. In this, the science of thermodynamics
provides an outstanding example of the power of abstract thought,

The work of the engineering thermodynamucist is not ended when he has devised
expressions, in the shape of algebraic formulae, for the respective performance
parameters and criteria. appropriate to each of his devices. He will then need
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-numerical data on the thermodynamic properties of the working substances which
are either contained within or passing through these devices. Here he will need to
call upon both experimental and- mathematical expertise. From this activity may
come empirical or semi-empirical correlating formulae to fit the great wealth of
experimental data. However, the values of the many thermodynamic properties of a
given substance are all theoretically interrelated and in the revelation of these
interrelations lies one of the great achievements of the science of thermodynamics.
The mathematical equations which have been devised to fit the experimental data
will therefore have to be put together in a form that will maintain thermodynamic
consistency between the numerical values computed therefrom by the engineer.
This task will fall upon the thermodynamicist.

The considerations outlined above have been influential in shaping the layout of
this' book, making it a volume designed for the engineer rather than for the
physicist or chemist, though the latter will also have much to learn from it. How-
ever, other influences have been equally strong in giving it a distinctive character.
In spite of the fact that there have been important developments in recent years,
the subject matter of thermodynamics is still largely taught along lines which follow
closely those set out by the great pioneers of the last century, who were at the
time exploring the unknown. This book takes advantage of recent developments to
restructure the presentation into a more logically satisfying sequence.

The most important of the recent developments in equilibrium thermodynamics
has been the Single-Axiom Approach of Hatsopoulos and Keenan,! in which the
previously disparate ‘Laws’ of thermodynamics have been shown to follow logically
from a single basic Law of Stable Equilibrium. The next most important develop-
ment is associated with the topic of thermodynamic availability and the Associated
concept of exergy. The topic of thermodynamic availability deals essentially with
the availability of energy for work production, a factor which has become of
increasing importance in very recent times as a result of the emphasis on energy
‘saving’. Despite the fact that this topic originated with Willard Gibbs and Clark
Maxwell over a century ago and has been pursued with some vigour in Germanyj, it
has in general suffered comparative neglect, although the respective theorems have
recently been formulated concisely in a critical review? by the present author. This
book takes advantage of both these advances in our understanding. The numerous
concepts and theorems of equilibrium thermodynamics are thereby restructured
and presented in a more logical sequence than hitherto.

It is the author’s experience that the important advances made by Hatsopoulos
and Keenan have not received the recognition which they deserve in academic
circles because the material appears in a volume which is not only set at a level of
sophistication beyond the normal capacity of the undergraduate but also goes well
beyond the content appropriate to an undergraduate.course. The basic ideas, how-
ever, are not of great difficulty and the present author has always believed that they
could be presented in a form which, while remaining equally rigorous, was set at a
level which would be readily digestible by an undergraduate of reasonable com-
petence coming fresh to a study of the science of thermodynamics. He has been
confirmed in this belief by giving a short course of undergraduate lectures in which,
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over a number of years, he has been able to develop a mode of presentation of the
ideas of Hatéopoulos and Keenan in more readily assimilable form. The interest
displayed by the undergraduates has been very rewarding and the present volume is
the natural outcome of this venture.

An earlier book3 published by Keenan alone in 1941 had a greatly beneficial
influence on the teaching of thermodynamics in schools of engineering in the
United States and the United Kingdom. However, because the book developed the
concepts and theorems of classical thermodynamics from cyclic statements of the
so-called First and Second Laws, it had the unfortunate effect of focusing undue
attention on cyclic processes at the expense of non-cyclic processes, which are the
more natural. By contrast, the Law of Stable Equilibrium of Hatsopoulos and
Keenan, from which those ‘Laws’ follow as corollaries, relates essentially to non-
cyclic processes, as also do the theorems of thermodynamic availability. The cyclic
approach unfortunately conceals for too long the nature of the true source of
irreversibility, but the non-cyclic approach brings this out very clearly right from
the start. Moreover, cyclic processes are somewhat artificial constructs. The natur-
ally occurring processes of the physical world are basically non-cyclic in character,
a cyclic process merely constituting the special case in which, by a deliberately
created succession of non-cyclic processes, the final thermodynamic state of a sys-
_tem is made to coincide with its initial state. Furthermore, if we start with un-
proven propositions relating to cyclic processes, we are not led naturally into the
theorems of thermodynamic availability, which relate to systems that are carried by
non<yclic processes between specified end states in the presence of a specified
environment. On the other hand, when we take advantage of the Single-Axiom
Approach of Hatsopoules and Keenan to develop the concepts and theorems of
equilibrium thermodynamics in terms first of non<yclic processes, these important
availability theorems take an earlier and more natural place in the sequence of
ideas. Not only is there no longer any need to introduce the troublesome Clausius
Inequality as a preliminary to the establishment of the concept of entropy (that
Inequality itself essentially constituting a theorem in thermodynamic availability),
but the whole sequence of ideas then follows § more logical pattem That pattern is
followed herein.

As the concepts and theorems are developed, chapter by chapter, from the start-
ing point of the basic Law of Stable Equilibrium, the reader will find that the
propositions which have been given the titles of the First and Second Laws of
Thermodynamics take on the nature of corollaries, so ceasing to be basic ‘Laws’ in
their own right; moreover, no need is found for the so-called ‘Zeroth Law’. In order
to help the reader to follow the logical development of the long sequence of ideas
that form the groundwork of the science of thermodynamics, a ‘Family Tree of
Thermodynamics’ is constructed and developed in the earlier chapters, its step-by-
step growth being shown at the end of each relevant chapter. By this means, the
logical structure of this rather abstract branch of science is made clearly evident.

The Second Law of Thermodynamics is frequently, but quite undeservedly,
endowed with a certain mystical aura, which should now be firmly dispelled by its

yTelegation to a status subsidiary to that of the Law of Stable Equilibrium, of which
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it 1s merely a corollary. No other important branch of science has been so depen-
dent on so many unproven postulates as are represented by the so-called Zeroth,
First, and Second Laws. It must be a matter of satisfaction that the science of
thermodynamics now needs no such underpinning,

Close on fifty years ago, Keenan described the steady-flow availability equation
as promising to be as revolutionary in its effect on thermodynamic reasoning as had
been the development of the steady-flow energy equation in its time. Both equa-
tions relate to non<yclic processes. That the importance of the concepts and
theorems of availability have not even yet taken the position of importance that is
undoubtedly their due must almost certainly be attributable to the fashion of start-
ing the presentation of thermodynamics in terms of cyclic statements of the First
and Second Laws, rather than starting with the study of non-cyclic processés and
proceeding therefrom to cyelic processes, as in this book.

Textbooks on thermodynamics come on the market in a steady stream, most of
them little different from each other. There would consequently be little justifica-
tion for writing yet another if it did not have something new and important to say.
However, that something must be expressed in terms which are readily assimilable
by the undergraduate if the new approach is to stand a chance of gaining wide-
spread acceptance. It is considered that this book is set at such a level and that it
will help to bring thermodynamics out of its nineteenth-century setting, in which 1t
has remained for too long. It is, indeed, unthinkable to the author that the recent
developments of which it has taken advantage should continue to be neglected. It 1s
a matter of some concern that, in an age in which the great importance of energy
‘saving’ is increasingly being appreciated, important books and papers on energy
‘conservation’ are still appearing in which the concept of the availability of energy
for work production is found not to metit even a mention.

The book is 1n two parts, the first dealing with basic concepts and the second
with the development of those concepts. The last two chapters of Part II give a
fairly extensive and considerably more careful treatment of chemical thermo-
dynamics than is found in most texts. These should appeal particularly both to the
power engineer concerned with combustion and other chemical processes and to
the chemical engineer.

.The author’s Thermodynamic Tables in SI (metric] Units® have been used 1n
calculating the answers to the extensive collections ot Problems set at the end of
Part I and the end of Part I1.

This book is the product of many years of teaching experience and owes much
to the help recerved from many people, not least from those whom the author has
taught, and, indirectly by their writings, from the late Professor Joseph H. Keenan
and his collaborators. The author is also particularly indebted to his colleague
Dr Martin D. Cowley, of Trinity College, for reading through early drafts of the
manuscript and for his many helpful and perceptive comments, Finally, a warm
word of thanks is due to Miss Jill Stroud for her patience and skill in the typing of
the manuscript.

Cambridge, England RICHARD WILSON HAYWOOD
March 1979
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