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CHAPTER 1

Introduction

Many important and significant problems in engineering, the physical
sciences, and the social sciences, when formulated in mathematical terms,
require the determination of a function satisfying an equation containing

 derivatives of the unknown function. Such equations are called differential
equations. Perhaps the most familiar example is Newton’s law

e AT

m S Fy e (), 53@] 1)
» 4 L ’llt

for the position u(t) of a particic 2cted on by a force F, which may be a

function of time #, the position x(i), and the velocity du(t)fdt. To determine

the motion of a particle acted on by a ziven force F it is necessary to find a

function u satisfying Eq. (1). 1f i#¢ force 1 that due to gravity, then

“.)

I “-‘2‘ sl - (2)
<4
On integrating Eq. (2) we ha' 2
At i o
u(t) = —4g* + et + e 3)

where ¢, and c; are constants. To determine u(f) completely it is necessary
to specify two additional conditions, such as the position and velocity of the
particle at some instant of time. These conditions can be used to determine
the constants c; and ¢,.

In developing the theory of differential equations in a systematic manner
it is helpful to classify different types of equations. One of the more obvious
classifications is based on whether the unknown function depends on a single
independent variable or on several independent variables. In the first case
only ordinary derivatives appear in the differential equation and it is said to
be an ordinary differential equation. In the second case the derivatives are
partial derivatives and the equation is calied a partial differential equation.

1



2 Introduction

Two examples of ordinary differential equations, in addition to Eq. (1),
are

2Q(t do(t

L4000

dt dt

for the chargt Q(t) on a condenser in a circuit with capacitance C, resistance
R, inductance I, and impressed voltage E£(#); and the equation governing
the decay with time of an amount R(#) of a radioactive substance, such as
radium,

+%mo=ma @)

RO _ _ vy, s)
dt

where k is a known constant. Typical examples of partial differential
equations are Laplace’s (1749-1827) or the potential equation

Pu(z, y) |, Pu(@, y) _
ox? + P 0 )

the diffusion or heat equation

(2,1) _ du(z, 1)
o ar

* (7)

and the wave equation

2 Pu(z.n) _ du(z, 1) .
0z* or

Here «? and a® are certain constants. The potential cquation, the diffusion
equation, and the wave equation arise in a variety of problems in the fields
" of electricity and magnetism, elasticity, and fluid mechanics. Each is typical
of distinct physical phenomena (note the names), and each is representative of
a large class of partial differential equations. While we -will primarily
be concerned with ordinary differential equations we will also consider
partial differential equations, in particular the three important equations
just mentioned.

®

1.1 ORDINARY DIFFERENTIAL EQUATIONS .

. The order of an ordinary differential equation is the order of the highest
- derivative that appears in the equation. Thus Eqs. (1) and (4) of the previous
section are second order ordinary differential equations, and Eq. (5) is 2
first order ordinary differential equation. More generally, the equation

Flz, u(z), u'(@), . . ., u™(x)] =0 )

is an ordinary differential equation of the nth order. Equation (1) represents
a relation between the independent variable z and the values of the function
u and its first n derivatives o', v, . . ., u'™, It is convenient and follows the
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usual notation in the theory of differential equations to write y for u(x),
with %', y", . .., '™ standing for u’(z), W"(z), ..., u"(x). Thus Eq. (1) is
“written as ‘

Fa,y,y,...,y"™) =0. @)

Occasionally, other letters will be used instead of y; the meamng will be
clear from the context.

We shall assume that it is always possible to solve a given ordinary
differential equation for the highest derivative, obtaining

¥ = z,99.¥,..., 9" (3)

We will only study equations of the form (3). This is mainiy to avoid the
ambiguity that may arise because a single equation- of the form.(2) may
correspond to several equations of the form (3). For example, the equation

y:+ay +4y =0
leads to the two equations

. —z 4 Va2t — 162 or , =z — 2~ 164

) " 2

The fact that we have written Eq. (3) does not necessarily mean that
there is a function y = ¢(x) which satisfies it. Indeed this is one of the
questions that we wish to investigate. By a solution of the ordinary differ-
ential equation (3) on the interval « < z < f we mean a function ¢ such that
¢, 4", ..., ™ exist and satisfy

(@) =11z, $(z), ¢'(2), . . . , ¢ N (2)] 4)

for every z in @ < # < . Unless stated otherwise, we shall assume that
the function f of Eq. (3) is a real-valued function, and we-will be interested in
obtaiming real-valued solutions y = ¢(z).

It is easily verified that the first order equation

dR '
— == —kR 5
dt ®

ﬂha.s the solution
R=¢(t)=ce™*, —w<t< o, (6)

where c is an arbitrary constant. Similarly the functions,() = cos z and
¥x(z) = sin 2 are solutions of
¥ +y=0 @)
for all 2.
One question that might come to mind is whether there are other -
solutions of Eq. (5) besides those given by Eq. (6), and whether there are
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other solutions of Eq. (7) besides ¥,(2) = cos z and y,(z) = sin z. A question
that might occur even earlier is the following: Given an equation of the form
(3), how do we know whether it even has a solution? This is the question of
the existence of a solution: Not all differential equations have solutions;
nor is the questlon of existence purely mathematical. Ifa meaningful physical
problem is correctly formulated mathematically as a differential equation,
then the mathematical problem should have a solution. In this sense an
engincer or scientist has some check upon the validity of his mathematical
formulation.

Second, assuming a given equatlon has one solution, dods it have other
solutions ? - If so, what type of additional conditions must be specified in -
order to single out a particular solution? This is the question of uniqueness.
Notice that there is an infinity of solutions of the first order equatlon (5)
correspondmg to the infinity of possible choices of the constant ¢ in Eq. (6).
If R is specified at some time #, this condition will determine a value for c;
even so, however, we do not know yet that there may not be other solutions
of Eq. (5) which also have the prescribed value of R at the prescribed time ¢.
The questions of existence and uniqueness are difficult questions; they and
related questions will be discussed as we proceed.

A third question, a more practical one, is: Given a difierential equation
of the form (3), how do we actually determine a solution? We might note
that if we find a solution of the given equation we havc 2t the sume time
answered the question of the existence of a soluticn. (n the other hand,
without knowledge of existence theory we might, for example, use a large
computing machine to find an approximation to a “solution” that does not
exist. Even though we may know that a solution exists, it may be that the
solution is not expressible in terms of the usual elementary functions—
polynomial, trigonometric, exponential, logarithmic, and hyperbolic functions.
Unfortunately this is the situation for most differential equations. However,
‘before we can consider difficult problems it is first necessary to master some
of the clementary theory of ordinary differential equations.

‘ Linear and Nonlinear Eqnatlons A second important classification of
) ordinary differential equations is according to whether they are linear or
-nonlinear. The differential equation

Fz,y.9,....,9") =0
is said to be linear if F is a linear function of the variables y, ¥', ..., y'".
Thus the general linear ordinary differential equation of order n is
ay(@)y™ + @@y + - + au(x)y = g(=). ®

Equations (2), (4), and (5) of the previous section are linear ordinary
differential equations. An equation which is not of the form (8) is a nonlinear
equation. For example, the angle 0 that an oscillating pendulum of length /
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makes with the vertical direction (see Figure 1.1) satisfies
the nonlinear equation

;ﬁf +&sino=0. )
The mathematical theory and the techniques for
solving lincar equations arc highly developed. In con-
trast, for nonlinear equations the situation is not as
satisfactory. General techniques for solving nonlincar me
equations are largely lacking, and the theory associated = FIGURE 1.1
with such equations is also ‘more complicated than the
theory for linear equations. In view of this it is fortunate that many
significant problems lead to linear ordinary differential equations or, at
least, in the first approximation to linear equations For example, for the
pendulum problem, if the angle 6 is small, then sin § = 0 and Eq. (9) can be
replaced by the linear equation

On the other hand, there are important physical phenomena, such as the
current flow in an electron tube, in which it is not possible to approximate the
governing nonlinear differential equation by a linear one—the nonlinearity
is crucial.

In an elementary text it is natural to emphasize the discussion of linear
equations. The greater part of this oook is therefore devoted to linear
equations and to various methods for sqlving them. However, Chapters 8
and 9, as well as a large part of Chapter 2, are concerned with nonlinear
equations. Throughout the text we attempt to show why nonlinear
equations are, in general, more difficult, and why many of the techniques
that are useful in solving linear equations cannot be applied to nonhnear
equations.

1.2 HISTORICAL REMARKS

Without knowing something about differential equations and methods
of solving them it is difficult to discuss the history and development of this
important branch of mathematics. Further, the development of the theory
of differential equations is intimately interwoven with the general develop-
ment of mathematics and cannot be divorced from it. In these brief comments
we will just mention a few, certainly not all, of the famous mathematicians
of the seventeenth and eighteenth centuries who made important con-
tributions in this area. We will follow closely the brief historical survey given
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by Ince* [Appendix A] in his authoritative treatise on ordinary differential
equations, and the discussion by Cajori.

The theory of differential equations dates back to the beginnings of the
calculus with Newton (1642-1727) and Leibniz (1646-1716) in the seventeenth
century. Indeed Ince states,

Yet our hazy knowiedge of the birth and infancy of the science of differential
equations condenses upon a remarkable date, the eleventh day of November,
1675, when Leibniz first set down on paper the equation

fydy = 3%,

thereby not merely. solving a simple differential equation, which was in itself a
trivial matter, but what was an act of great moment, forging a powerful tool,
the integral sign.

Following Newton and Leibniz come the names of the Bernoulli brothers
Jakob (1654-1705) and Johann (1667-1748) and Johann’s son Daniel
(1700-1782). These are just three of eight members of the Bernoulli family.
who were prominent scientists and mathematicians in their time. With the
aid of the calculus, they formulated as differential equations and solved a
number of problems in mechanics, including that of the determination of the
curve of most rapid descent for the motion of a particle under the influence
of gravity. It was Daniel whose name is associated with the famous Bernoulli
equation in fluid mechanics. In 1690 Jakob Bernoulli published the solution
of the differential equation, written in differential form, (b%? — g3)" dy =
(a®)* dz. Today this is a simple exercise but at that time to go from the
- equation ¥ = [¢%/(b%? — a%)]"f to the differential form, and then to assert
that the integralst of each side must be equal except for a constant was a
major step. Indeed, for example, while Johann Bernoulli knew that
az? dz = daz*|(p + 1)] was not meaningful for p = —1, he did not
know that dz/x = d(Inx). Nevertheless he was able to show that the
equation dy/dx = y/az, which we could solve by writing it as

Q41 _de
y x

has the solution °/z = ¢ where c is a constant of integration. See Section 2.4.

By the end of the seventeenth century most of the elementary methods
of solving first order ordinary differential equations (Chapter 2) were known,
and attention was centered on higher order ordinary differential equations
and partial differential equations. Riccati (1676-1754), an Italian mathema-
tician, considered equations of the form f(y, ¥, ¥") = 0 (Section 3.1). He

* References are listed at the end of each chapter.
1 Jakob Bernoulli appears to be the first person to have used the word integral,
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also considered the nonlinear equation known as the Riccati equation,
dy|de = al(z) + a,(x)y + a,(x)y?, though not in such a general form.

Euler,* one of the greatest mathematicians of all time, also lived during
the eighteenth century. Of particular interest here is his work on the formu-
lation of problems in mechanics in mathematical language, and his develop-
ment of methods of solving these mathematical problems. Lagrange
(1736-1813) said of Euler’s work in mechanics, “The first great work in

> which analysis is applied to the science of movement.” Euler also considered
such questions as the possibility of reducing second order equations to first
order equations by a suitable change of variables; he introduced the concept
of an integrating factor (Section 2.6), and he gave a general treatment of
linear ordinary differential equations with constant coefficients (Chapters 3
and 5) in 1739. Later in the eighteenth century the great French mathema-
ticians Lagrange and Laplace made important-contributions to the theory of
ordinary differential equations and gave the first scientific treatment of partial
differential equations. Indeed, possibly the most famous partial differential
equation in mathematical physics, u,, + u,, = 0, where subscripts denote
partial derivatives, is known as Laplace’s equation. The student who is
interested in the history of the theory of differential equations might wish
to refer to one of the many bookst dealing with the development of
mathematics.

In more recent years part of the effort of mathematicians in the arcas of
ordinary and partial differential equations has been to develop a rigorous,
systematic (but general) theory. The goal is not so much to construct solu-
tions of particular differential equations, but rather to develop techniques
suitable for treating classes of equations.

PROBLEMS

1. For each of the following differential equations determine its order and
whether or not the equation is linear.

dy - dy . . o 4% dy
(a)mzzﬁ+x‘-l;+2y=smx (b)(1+y)d—x’+xd_x+y=ez
dy d¥% d¥% dy dy 2
(C)E“+d—x3+@+d—x+y_l (d)c?:;+$y =0

dy . dy 3
(e)d—-xz+sm(x+y)=smx (f)‘-&-3+f€d—x+(¢0$f")!/—f"’8

* Euler (1707-1783) was a prolific mathematician. His collected works fill over sixty
volumes. Even though blind during the last seventeen years of his life his work continued
undiminished.

+ The books by Ince and Cajori have already been mentioned. See also Beil and Struik.
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2. Verify for each of the following that the given function or functions are
solutions of the differential equation.

@ ¥ —y = 0; y1(x) = ¢%,y,(%) = coshz

® ¥ +2y ~3y =0; y(z) =e %, y(2) =&

© ¥ + 49" + 3y =2; §1(2) = 2[3,9@) = 2 + 23

(@) 22%" + 32y —y = 0,2 > 0; y,(z) =¥, y,(2) = 2!

© 2" + 52y +4y =0,z > 0; y,(2) =%, yy() =22 Inz

) ¥ +y =s50cx,0<z <72, y = ¢ = (cosz)Incos x +zsinx

Q@ vy — 2z =1y = $(z) =?'L:“’dt + e

3. Determine for what values of r each of the following linear differential
equations has solutions of the form y = =,

@y +2y=0 by ~-y=0

@y +y' =6y =0 @y -3y +2' =0

4. Determine for what values of r each of the following linear diffcrential
equations has solutions of the form ¥ = 2".

(@) 2% +42y’ +29 =0, 23>0
(b) 2y" —dzy’ + 4y =0, >0

5. The order of a partial differential equation is defined as the order of the
highest partial derivative that appears in the equation. Similarly the equation is
said to be /inear if the equation is linear in the dependent function and its derivatives.
For each of the following equations determine the order and whether or not the
equation is linear.

(@) ugy +uyy +u; =0 (b) otuy, = u;
(©) alup, = uy () upe + tyy + sttty +uuy +u =0
(€) Upgrr + 2uppyy + Uyyyy = 0 ) u +uuy =1 + sty

6. Verify for each of the following differential equations that the given function
or functions are solutions.

@) ug +uy,y =0; un(z,y) =z — 42, ug(x, y) = cos z cosh y
) Pu,, = uy; w(z, ) = e sin x,

uy(x, t) = e ***"t sin Az, i a real constant
©) dPu,, = uy; u(x, 1) = sin Az sin Aat, A a real constant,

us(z, 1) = sin (z — at)
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_ 7. Verify for each of the following differential equations that the given function
is a solution.

(a) “zz+"w+“u’=°; ""4’(1’:%2)”(?’ +y’+z:)_%’
, (z,9,2) ¥ ©0,0,0)
(®) atuyy =uy;  u =Pz, 1) = (w[)he N, >0

©). @y = uy; u=fz—at+g= + af), where fand g are twice differ-
entiable functions
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CHAPTER 2

First Order Differential Equations

2.1 LINEAR EQUATIONS

This chapter deals with differential equations of first order, that is,
equations of the form

y =/f(=y9), (1)

where fis a given function of two variables. Any function y = ¢(x), which
with its derivative y’ identically satisfies Eq. (1), is called a solution, and our
object is to try to determine whether such functions exist and, if so, how to
find them. In order to gain some familiarity with differential equations and
their solutions, we will first consider the linear first order equation

¥ + p(@)y = g(2), (2)

where p and g are given continuous functions on some interval a < z < §.
In this section we will be concerned with methods for solving Eq. (2). More
theoretical questions involving the existence and uniqueness of solutions in
general will be discussed in Section 2.2.

Let us begin with the equation

Yy +ay=0, (3)

where a is a real constant. This equation can be solved by inspection. What
function has a derivative which is a multiple of the original function? Clearly
y = ¢7% satjsfies Eq. (3); furthermore

Yy = ce %%, ' @

where ¢ is an arbitrary constant, also does so. Since ¢ 'is arbitrary, Eq. (4)
represents infinitely many solutions of the differential equation (3). It is
natural to ask whether Eq. (3) has any solutions other than those given by
Eq. (4). We will show in the next section that there are no other solutions,
but for the time being this question remains open.

Geometrically, Eq. (4) represents a one-parameter family of curves,
called integral curves of Eq. (3). For a = 1 several members of this family

10
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FIGURE 2.1

are sketched in Figure 2.1. Each integral curve is the geometric representation
of the correspondmg solution of the differential equation. Specifying a
particular solution is equivalent to plcknng out a particular integral curve
from the one-parameter family. It is usually convenient to do.this by
prescnbmg a point (,, ¥,) through which the integral curve must pass, that
is, we seek a solution y = ¢(z) such that

(o) = Yo
Such a condition is called an initial condition. Since y stands for &(z) we

could also write
Y=Y, at z =z,

However, it is common practice to express the initial condition in the form
Y(Zo) = Yo, %)

-and this is the notation we will usually use in this book. A first order differen-
tial equation together with an initial condition form an initial value problem.*

* This terminology is suggested by the fact that the independent variable often denotes
time, the initial condition defines the situation at some fixed instant, and the solution of the

initial value problem describes what happens later.
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For example, the differential equation (3),

Y +ay=0,
and the initial condition
y(0) =2, (6)

form an initial value problem. As noted above, all solutions of the differ-
ential equation (3) are given by Eq. (4). The particular solution satisfying
the initial condition (6) is found by substituting # = 0 and ¥ = 2 in Eq. (4).
Then ¢ equals 2 and the desired solution is the function .

Yy = $(@) = 2¢7=. )]

This is the unique solution of the given initial value problem. More generally,
it is possible to show that the initial value problem composed of the differ-
ential equation (2) and the initial condition (5) will have a unique solution
whenever the coefficients p and g are continuous functions. This is discussed
in the next section.

In order to develop a systematic method for solving first order linear
equations it is convenient first to work backward. Thus we rewrite the
solution (4) of the differential equation (3) in the form

ye*® = c. 8)
On differentiating the left side of Eq. (8) we obtain A
(ye*) =y'e” + aye™ = e=(y' + ay), 9
and hence Eq. (8) implies that
e ) =0, 10)

Cancellation of the positive factor e* yields the differential equation (3). It
is important to note that the solution of Eq. (3) can be constructed by
reversing the above process, that is, we multiply Eq. (3) by ¢**, obtaining
Eq. (10), from which Eq. (8) follows by using Eq. (9). Finally, solving Eq. (8)
for y gives Eq. (4).
The same procedure can be used to solve the more g'eneral equation

Y + ay = g(2). 1n

Muitiplying by e** gives
e“(y’ + ay) = e*g(2),

or, using Eq. (9),

(ye*®) = e*g(x).
Heunce

@
ye*® =f e*'g()y dt + c,
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where c is an arbitrary constant. Hence a solution of Eq. (11) is the function
x :
y = §(z) = e f 'g(f) dt + ce™*, (12)'

In Eq. (12) and elsewhere in this book we use the notation - J(t) dt to denote
an antiderivative of the function f, that is, F(z) = f xl,f(t) dr designates some

particular representative of the class of functions whose derivatives are equal
to f. All members of this class are included in the expression F(z) + c,
where c is arbitrary. :

Thus, for a given function g the problem of determining a solution of
Eq. (11) is reduced to that of evaluating the antiderivative in Eq. (12). The
difficulty involved in this depends on g; nevertheless Eq. (12) gives an
explicit formula for the solution ¥ = ¢(x). The constant ¢ can be determined
if an initial condition is prescribed.

Now let us turn to the general first order linear equation (2),

Yy +p@)y = g).

By analogy with the foregoing process we would like to choose a function
_ 4 so that if Eq. (2) is multiplied by u(z), the left-hand side of Eq. (2) becomes
the derivative® of u(z)y. That is, we want to choose u, if possible, so that

p@)y" + p@)y] = (uE)y)
= u@y + @)y
Thus u(x) must satisfy :
P(@yu() = yu' @).
Assuming for the moment that u(x) > 0, we obtaint
EE _ 1 p@) = pla). (13)
u(x)
Hence
In p(z) = f "o dt,
and finally

u(z) = exp l:fzp(t) dt} (14)

* A function 4 having this property is called an integrating factor. Integrating factors are
discussed more fully in Section 2.6.

@ dt
T Recall that f — = In |z].
!



