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CHAPTER
1

SAMPLING THEORY

*“ Very well,” said Henchard quickly, * please
yourself. But I tell you, young man, if this
holds good for the bulk, as it has done for the
sample, you have saved my credit, stranger
though you be. What shall I pay you for this
knowledge.”

THOMAS HARDY— The Mayor of Casierbridge

PROMIILITY DISTRIBUTIONS

Probability is a character associated with an event indicating its tendency
to take place. To speak of probabilities one needs to define an event-
space that contains all possible (or known) outcomes of a certain process.
If there are n possible outcomes associated with a certain process and an
event, A, occurs in m of these outcomes, then the probability of
obtaining event A, P(A), is defined as

P(A)=1:-. (L1

This definition has the convenience of expressing probabilities as real
numbers between 0 and 1, inclusive. Probabilities calculated as defined
above are also known as relative or objective probabilities.

In many situations it is difficult, if not impossible, to enumerate all
possible or known events. For example, it is hardsto define an event-
space to adequately calculate the probability that oil prices will change or
that the University of Washington Huskies will win the Rose Bowl. The
probabilities of these and similar events can be estimated from ex-
perience and trends. Such probabilities are known as subjective prob-
abilities. Our discussion will be restricted to objective probabilities.

A plot of events versus their probabilities constitutes a probability

1



2 SAMPLING THEORY
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Figure 1.1 Probability distribution of tossing a fair coin.

distribution. The probability distributions of tossing a fair coin and
rolling a fair die are shown in Figures 1.1 and 1.2, respectively. In each
of these examples all events have the same probability. This is not
generally the case. Consider the probability distribution of rolling a pair
of dice with the outcome being taken as the sum of the digits on each die.
The probability distribution of such a process is shown in Figure 1.3. For
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Figure 1.2 Probability distribution of rolling a fair die.
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Figure 1.3 Probability distribution of rolling a pair of dice.

convenience, the event-space may be considered continuous. If it is
assumed that all values between 1 and 13 are possible, and that extrapola-
tion is valid, Figure 1.3 can be redrawn as shown in Figure 1.4.

Assume that the heights of the students at a certain school are being
measured. The measurements may range from 150 to 200 cm. Even though
our measurement may be precise only to 0.5 or 1.0 cm, we can assume that
our event-space (the height) is continuous with any value between 150 and
200 cm possible. The probability distribution of such an event may look like
that shown in Figure 1.5.

Probability distributions can assume any shape depending on the
event-space under consideration. Distributions that show variations in
probability (usually maximizing at a particular event) are of great im-
portance in chemical analysis. Analysts rarely deal with probability
distributions of the type shown in Figures 1.1 and 1.2. For convenience, a
probability distribution is expressed in terms of a probability density
function. Generally, if

* f(x) dx
P(x, <x<xp)=T—), 1.2)
L f(x) dx ~
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PROBABILITY DISTRIBUTIONS 5

then f(x) is called the probability density function for the variable x. If
the probability distribution shown in Figure 1.5 is expressed in terms of a
probability density function, f(x), then the probability of finding a student
whose height is between 185 and 190 cm is the ratio of the shaded area
to the total area under the curve in Figure 1.6.

The most commonly studied probability distribution is the normal
(also called the Gaussian) distribution (1). For any normally distributed
variable, x, the probability density function, f(x), is given by

- 2
= “)], —m<x <, 1.3)

1
ex
w7 247
Thus the normal distribution is defined only by two parameters. The first

is the mean, u, and the second is the variance, o°. These parameters Are
given by

f(x)=

n’[ M) ds o u=t- (1.4)

and
a N
a’=j’ (x— uPf(x) dx or a"=—;-,2(x¢—u)’. (1.5)

=)

]}

150 cm l 185 190 200cm
Height x
Figure 1.6 Probebility density function associsted with Figure 1.5. Probability of finding a
student whose height is between 185 and 190 cm is the ratio of the shaded ares t0 the total
area.



6 SAMPLING THEORY

where N is the total number of elements under consideration. A normal

distribution of a variate x is expressed as x = N(u, %) and has the following

properties:

It has a maximum at x = u.

It is symmetric with respect to x = p.

It has two points of inflection at x=p 0.

A change in pu causes a translation of the curve without changing

its shape.

5. A change in o? will widen or narrow the curve without a change
in u.

Ll ol o o

STANDARD WNORMAL VARIATE
Consider a variate x = N(u, ). Define Z such that

x—
zZ = ‘a“. (1.6)

The mean of the Z’s, Z, is

Z==5 [Z n-ié]

i==)
=L {Nu-Nul=0
N I“' "" -

The variance of the Z’s, 0%, is

SZ-2¢ Y@y

2

727N N
lZ(xi M 9;2_1
N & e

Therefore Z = N(0, 1).
The probability density function is given by

' =1 -zn
f(2) T



POPULATIONS AND SAMPLES 7

This function is also known as the standard normal function. It describes
all normally distributed variates regardless of the different values of their
parameters (i.e., u and 0?). Therefore, all normal distributions with
different means and variances, after transformation to a standard form by
Equation (1.6), can be represented by a single table of probabilities. The
probabilities of the standard normal variable Z are given in Table A.1 in
the appendix.

POPULATIONS AND SAMPLES

When a phenomenon like the heights of students is to be studied, two
statistical approaches are usually used. The first is to measure the height
of every student of the N students enrolled in the school. Conducted in
this manner one can find the “true” average height (i.e., u). The data set
of such an experiment contains information about every single element
under observation and is thus called population data. Parameters such as
p and o? calculated from such data are referred to as population
parameters. The values of u and o are calculated according to Equa-
tions (1.7) and (1.8):

N
=%X
p= ‘}_:1 ~ %)
and
R il (1.8)

=1 N

The second approach is to measure the heights of only a group
(sample) of n students. This approach may be advantageous in terms of
economics and time. One can calculate an average, &, and a variance, §?
(sample parameters) from the sample data. The sample parameters are
calculated according to Equations (1.9) and (1.10):

-
E=L (1.9)
and ’
n n—X 2
s? 2:1( "'_;) (1.10)

The crucial question at this point is: How do £ and s? differ from the true



3 SAMPLING THEORY

values u and o7, respectively? Before an adequate answer to this
question is considered, the sampling process must be examined.

The chosen sample must be representative of the population. This can
be guaranteed if we have a random sample; that is, when every element
in the population has an equal chance of being included in the sample. A
random sample can be obtained, for example, by drawing names from a
well mixed box that contains the names of all the students. Our sample
will not be random if, for instance, we choose the students from The
Dean’s Honor List (indeed, the authors would not be chosen). Sample
size is also of great importance. The larger the sample size the closer the
agreements between o and s? and between u and i. In practice, sample
size is usually determined by the economics of the experiment being
conducted.

As depicted in Figure 1.7, the sample distribution can be anywhere
within the parent distribution. The calculated sample mean can be a good
approximation of u (e.g., Xp) or a bad one (e.g., s or Xc). Samples A
and C may be the product of nonrandom sampling or a small sample size.

The mean, £, and the variance, s?, describe the distribution of one
sample (xx rs, where r is a real number). Also of interest is the dis-
tribution of the means. If m different samples are obtained and m
different averages are calculated, one can treat the m means as a
separate population. An average, m or E(X), and a variance, o or o3,
can be obtained for this distribution. These important parameters can be

=4 «——e—=_Parent population .

. o Samples

esvsssoseves

Figwe 1.7 The sample distribution can be anywhere within the parent distribution.
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estimated from one normally distributed random sample. The nfnple
average, £, is an unbiased estithate of ri:

Zn

i=1

m= E(x)=T .11

The variance of the mean, o2, can be derived as follows, From Equation
(1.9), ' _
i=§.‘+£§+. . .+£"...
n n n
Let Var(x) denote the variance of variate x. By using the propagation of
error principle (2) and assuming that the x;’s are uncorrelated:

2
Var(x) = (%) [Var(x,) + Var(x;) +- - - + Var(x,)].

Assuming that the x’s have equal variances, s>, the above equation can
be rewritien: .

Var(x‘)-r(-'-ll-)z ns® or sisg. ‘ (1,12)'

Thus the average and the variance of the normally distributed means can
be estimated from Equations (1.11) and (1.12). When these parameters
are known, the interval in which %, the mean of any random sample
drawn from the same population, exists can be estimated. Table A.1 -
shows that the value of a normally distributed variate lies in the interval
£+1.96s 95% of the time. By the same token, the mean of the popu-
lation, u, as calculated from any random sample taken from the popu-
lation, lies in the interval % +1.96s; 95% of the time. Generaly for a
randomumpleofsnze n, the range

susi+Z— .

b ZJ;,' usx ZJ,'.' (1.13)

is an estimate of u at a certain confidence level defined by Z. Some

popular values of Z are given in Table 1.1. Thus a random sample of size

n, drawn from a population of size N, has an average & and a variance

2 . The probability that the true mean, u, is in the interval 7+ 1. 96s/vVn

is 0.95 (95% of the time). The variance of the mean, si, nuy be
corrected for the finite sample size and expressed as

n\ s?

. 3= (1 'N) z. (1.14)
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Table 1.1 Valuwes of Z at Various Comfidence

Levels
Confidence
¥4 Level
1.64 90%
196 95%
2.58 99%

The sample variance is an unbiased. estimator of the variance of the
population, '

=5 (1.15)

If the population is not normally distributed, large random samples
(n>30) must be taken to estimate u and o? (3). The means of the
random samples, however, are considered normally distributed (3, 4).
The reliability of the estimates of u and o (£ and s?) requires that s* be
a good approximation of o?. Although large samples are needed. this
sampling technique has the advantage of tolerating non-normaily dis-
tributed parent populations. If the parent population is known to be
normal, only a small random sample is sufficient to estimate p and o”.
However, different statistics are needed to treat small samples taken from
normally distributed parent populations.

STUDENT’S ¢-DISTRIBUTION

Take all possible small random samples of size n from a normally
distributed population with a mean u and variance o”. For each sample
compute £ and s* and define

:=(£%‘—‘)JZ. (1.16)

The distribution of the ¢ values is known as the Student’s ¢-distribution
(5). Every value of n gives rise to a characteristic ¢-distribution that will
be associated with n— 1 degrees of freedom. The variable ¢ exists within
a certain range given a certain sample size and a particular confidence
level. In general,

=x

- (1.17)

s s
f—=<p<i+t—,
vn Jn

O_"I /to}j.J

1V.
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where the value of f is defined by the confidence level and (n— D.If
n=6 and the desired confidence level equals 0.95, Table A.2 in the
appendix shows ¢ to be 2.57 for S, or (n — 1) degrees of freedom. Therefore,
the 0.95 confidence level interval for w is given by

s S
F-257 —=u=i+2.57—. (1.18)
J6 Jo
Equation (1.18) implies that u exists 95% of the time in the range
% +2.575/Y6. To estimate o2 we refer to yet another distribution—the x°
distribution. We define
(n—1)s*
Xi_l=—-;z—‘. (1.19
The population variance, o, can be estimated from the sample variance,
s%. An interval in which o’ exists is given by

—1)s? n—1)s*
An=D)s® _ o =157 (1.20)
Xil-a/2.n—-1y Xa/2.n-1)

where | —a is the desired confidence level. Assume that ten de-
terminations for lead in Lake Sammamish are reported with a standard
deviation, s, of 4mg/L. From Table A.3 in the appendix. the
population variance, at the 98% (a =.02) confidence level, is in the
following interval:

92(,16) o= 9516)
X (99,9 Xi01.9)

6.65 < o =< 68.90.

To summarize, one only needs small samples if the population is
known to be normally distributed. Equation (1.17) calculates an exact
confidence level interval for w. .If the population is not normally
distributed. we have to obtain large samples (n > 30) and Equation (1.13)
gives an approximate confidence interval for u. Sample size and the
allowable error (the degree of accuracy required) are important since
their values determine the estimation interval. If we denote the maximum
allowable error by € and the variance in the population whose mean is
being estimated by o, the sample size needed, #, is given by

Z2g?

n==p. (1.21)

where Z is the value of the standard normal variate associated with the
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desired confidence level. We can obtain an estimate of o from past
experience or from a preliminary sample. Alternately, one can man-
iputate sample size, n, until

€=Zsi. (122)

Thus far, we have considered parameter estimation of population
distribution from only one sample. Better estimations are possible if more
than one random sample are drawn from the population. If all possible
samples of size n are drawn from a population of N, one can calculate
for each sample. The x’s will be normally distributed when n > 30 even if
the parent population is not. If the parent population is normally
distributed, the £’s will be normally distributed regardless of n. The
distribution of x’s will have a mean, E(%), and a variance, s}. Population
parameters are given by

p = E(X) (1.23)
and
o2 =52 L;%:—nl)) (1.24)
If n<€N,
0'2 = nsi‘ (1.25)

BINOMIAL DISTRIBUTION

Consider a particular outcome, O, of a single trial of a certain process
and let

p = probability that O will take place
and
q = probability that O will not take place

such that pt+qg=1.
The binomial distribution is a discrete distribution that predicts the
probability of O taking place X times in N trials. This is given by

P(X, M=-X'ml—v{'—§)~!'p'xq~_x. {1.26)

Consider the tossing of a fair coin. In a single trial the probability of
getting a head, p, is 1. The probability of not getting a head is equal to

POD ot pum

- '



