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Preface

Graph theory is one of the branches of modern mathematics which has shown
impressive advances in recent years. An explosive growth of graph theory is
witnessed due to its essential roles providing structural models and indispens-
able tools in computer science, communication networks and combinatorial
optimization problems.

Graph theory has matured mathematically as indicated by an increas-
ing number of deeper results, such as the Regularity Lemma, Hall’'s Theo-
rem, Graph Minor Theorem, which have been successfully applied to many
branches of mathematics. In the meantime, graph theory has grown stronger
by introducing techniques from other branches of mathematics (e.g., proba-
bilistic method, linear algebra, group theory, and topology).

Matching theory, or more generally factor theory, is one of the fundamental
areas in graph theory. It studies the structures and properties of matchings
and factors — the simplest nontrivial substructures of graphs. Matchings and
factors have many applications in other areas of graph theory, and techniques
from factor theory such as the alternating path and decomposition procedure,
are used in systematic approaches to combinatorial problems. Matching and
factor theory is also one of earliest topics to be studied in graph theory.

Since the appearance of the classic work Matching Theory by Lovéasz and
Plummer in 1986, factor theory has flourished over the last two decades,
and much new and interesting progress has been made in graph factors and
matching extension theory. However, these new results are not well summa-
rized in traditional graph theory textbooks. This book is intended to serve
as a collection of recent results in this interesting and very active field, which
could serve as a reference manual for researchers or an introduction for young
graph theorists or graduate students. To this end, sections on more advanced
topics are included, and a number of interesting and challenging open prob-
lems and conjectures are presented at the end of each chapter.

For two reasons, we do not intend to cover all aspects of factor theory.
One reason is that the branch has progressed so much that we are unable to
include all the old and recent developments in it; the second reason is that
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some topics are already covered elegantly in earlier books, e.g., Lovasz and
Plummer’s book on matching theory. Our book concentrates mainly on the
theoretical aspects of factor theory, not including the algorithmic aspects.
Moreover, due to space limitation, some interesting and closely related topics
were left out (e.g., factor factorizations, factors in random graphs, (1, f)-odd-
factor, subgraph packing problems, etc.), which can be found in the original
literature. We give priority to the topics which are still very active but lack of
exposures, such as component factors, connected factors, matching extension,
optimal brick decompositions, fractional factors and L-factors.

This book is based on lecture notes written for summer graduate schools
at Nankai University and Shandong University in 2005. The selection of the
material was of course heavily influenced by our personal interests, as well
as the limitations of space, while trying to cope with the recent development
in the areas not covered by any known book. The book is primarily aimed
at researchers and graduate students in graph theory. However, most of the
material discussed is accessible to anyone with an undergraduate level under-
standing of mathematics. Our main source of materials is from three sources:
research articles, textbooks and survey papers. The complete list of articles
is given at the end of the book. The textbooks include:

1. J. Akiyama and M. Kano, Factors and Factorizations of Graphs, Version
1.0, June 2007 (in press).

2. J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in
Mathematics 244, Springer, 2008.

3. L. Lovasz and M. D. Plummer, Matching Theory, North-Holland Inc.,
Amsterdam, 1986.

The survey papers include:

1. J. Akiyama and M. Kano, Factors and factorizations of graphs — a
survey, J. Graph Theory 9 (1985) 1-42.

2. M. Kouider and P. D. Vestergaard, Connected factors in graphs — a
survey, Graphs Combin. 21 (2005) 1-26.

3. M. D. Plummer, Extending matchings in graphs — a survey, Discrete
Math. 127 (1994) 277-292.

4. M. D. Plummer, Extending matchings in graphs - an update, Congres-
sus Numerantium 116 (1996) 3-32.

5. M. D. Plummer, Graph factors and factorization, Handbook on Graph
Theory, Eds.: J. Gross and R. Yellen, CRC Press, New York, 2003 403-430.

The project was supported by the Natural Sciences and Engineering Re-
search Council of Canada under grant OGP0122059, and NSFC 60673047
and 10871119, 985 Project of China.

We are indebted to many friends and colleagues who offered advice or
supplied helpful material in this project. Special thanks to M.D. Plummer,
M. Kano and William C. Y. Chen, for inspiring conversations. We thank B.
Alspach, N. Ananchuen, M. C. Cai, O. Favaron, S. McGuinness, K. Heinrich,
X. Li, D. Lou, G. Yan, C. Q. Zhang, warmly for their various contributions.
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Chapter 1
Matchings and Perfect Matchings

As a young branch of mathematics, Graph Theory has experienced the explo-
sion growth as the same phenomenon that has been taking place in computing
science and communication networking. In the mean time, there are many
new terminologies and knowledge accumulated in the process. So there are
often more than one names or notions defined for a same entity. We list the
terms and notions frequently used in this book and hope to provide readers
with a consistent reference.

Notions

Let G be a graph, with vertex set V(G) and edge set E(G). Let f bea
positive integer-valued function defined on vertex set V(G).

|S|: order of a set S

|z|: the largest integer not greater than z;

[x]: the smallest integer not less than ;

V(G): the vertex set of G, sometimes we use |G| for the order of G, ie.,

61 = V(G

E(G): the edge set of G, occasionally we write ||G|| for the size of G, i.e.,
IIGll = |E(G));

AAB: symmetric difference of two sets A and B, i.e., AAB = (A-B)U
(B —A)

dc(v): the degree of a vertex v in G;

0(G): the minimum degree of G;

A(G): the maximum degree of G;

V(v): the edges incident with the vertex v;

V(S): the set of edges with exactly one end-vertex in the set S;

Ng(S): the set of vertices adjacent to a vertex of S, i.e., Ng(S)={z|zy €
E(G) and y € S}, or in short N(S) if no confusion is arisen;

E¢(S, T): the edges with one end in § and another end in T" and e (8, T) =
|Ec(S, T;
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ok (G): degree sum of k independent vertices;

u(G): the matching number of G;

p¢(G): the fractional matching number of G;

n(G): the maximum cardinality of joins in G;

£(X): the smallest integer m such that no graph G embeddable in surface
¥ is m-extendable;

ext(G): the extendability number of a graph G;

b(G): the number of bricks of G in a decomposition;

¢(G): the number of critical { K3, K3}-components in G

p(G): the number of Petersen subgraphs;

i4(G): the induced matching number;

G°: the complement of G;

G|S): the induced subgraph of G by a vertex set S;

0(G): the number of odd components of G;

w(G): the number of components of G;

¢(G): the circumference of G;

B3"(G): the vertex covering number of G;

I(G): the set of isolated vertices in G;

i(G): the number of isolated vertices in G;

D(G): the set of all vertices in G which are not saturated by at least one
maximum matching of G;

A(G): the set of vertices in V(G) — D(G) adjacent to at least one vertex
in D(G);

C(G) = V(G) - D(G) — A(G);

fe(G): the number of factor-critical components in G;

te(G): the number of triangle clusters in G;

oc(G): the number of those components of G that are odd cacti;

®(G): the number of 1-factors in G;

G5: the subgraph induced by the vertices with minimum degree in G;

G the subgraph induced by the vertices with maximum degree in G;

k(@G): the vertex connectivity of G;

k'(G): the edge connectivity of G;

A(C): the characteristic of a cut C;

cA(G): the cyclic connectivity of G;

(G): the independent number of G;

7(G): the dominating number;

v*(G): the genus of G;

X'(G): the edge chromatic number of G;

X4(G): the edge-cover number of G;

T2(G): the size of a minimum 2-covering of G;

G V H: the join of two graphs G and H;

G": the rth power of a graph G;

t(G): the toughness of G introduced by Chvétal [151],
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t(G) =mjn{w(lTS_|?) | SCV(G), w(G—-S) > 2};

7(G): a variation of toughness introduced by Enomoto [184],

T(G)=m{% | S CV(G), w(G—S)Z2}-

We define, for all disjoint subsets S and T of V(G),
3c(S,T) =
E|S| + 3 crda(x) — k|T| — ec(S,T) — gc(S,T) for k-factor;
F(8) + X perda(z) — f(T) — ec(S5,T) — qc(8,T) for f-factor;
f(8) + serda(x) — 9(T) — ec(5,T) — g6 (S, T) for (g, f)-factor,

where ¢g (S, T) is defined for k-factors, f-factors and (g, f)-factors in Theo-
rems 2.1.1, 2.1.2 and 2.1.3, respectively.

1.1 Definitions and terminologies

To understand the developments of matchings and factors in graphs, we would
like to review the history briefly by listing the most significant milestones in
this fascinating area of graph theory.

The first attempt on the study of factors was made by Danish mathe-
matician Petersen (1891), who proved that every graph of even degrees can
be decomposed into the union of edge-disjoint 2-factors. This was motivated
from the study of an algebraic factorization problem. He also showed that
every 2-connected cubic graph has a 1-factor. These two results can be viewed
as a forerunner of modern graph factor theory.

For matchings in bipartite graphs, Kénig (1931) and Hall (1935) obtained
the so-called Ko6nig-Hall Thecrem (sometimes, known as Hall’'s Theorem).
Due to its wide applications in many graph theory problems and other
branches of mathematics, Konig-Hall Theorem remains one of most influ-
ential graph-theoretic results.

In 1947, Tutte gave a characterization (i.e., so-called Tutte’s 1-Factor The-
orem) for the existence of perfect matchings in arbitrary graphs and it has
become a cornerstone of factor theory. Till now, this elegant theorem is still
one of the most fundamental results in factor theory. Subsequently, Tutte
(1952) extended the techniques in the proof of 1-Factor Theorem to obtain a
sufficient and necessary condition for a graph to have an f-factor.

Gallai (1964) and Edmonds (1965), independently, investigated a canon-
ical decomposition of arbitrary graphs in terms of its maximum matchings
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and thus revealed the structure of graphs related to matchings. This deep
and important result is referred as Gallai-Edmonds Structure Theorem. The
existence of the canonical decomposition and an efficient method to find such
a decomposition allowed Edmonds to obtain the first polynomial algorithm
for finding maximum matchings in graphs.

The most general degree-constrained factors, (g, f)-factors, were studied
by Lovész (1970). He gave necessary and sufficient conditions for a graph to
have a (g, f)-factor. This theorem generalized the criteria of all other factors,
such as 1-factors, k-factors, f-factors and [a, b]-factors.

For the more comprehensive account of history on matching theory and
graph factors, readers can refer to Preface of Lovész and Plummer’s Matching
Theory or Biggs, Lloyd and Wilson’s Graph Theory 1736-1936.

In this book, we mainly deal with factors in finite undirected simple graphs.
Some results also hold for graphs with multiple edges, which we point out
accordingly.

The degree of a vertex v in a graph G, denoted by dg(v), is the number
of edges of G incident with v, each loop counting as two edges. In particular,
if G is a simple graph, dg(v) is the number of neighbors of v in G. A vertex
of degree zero or one are called an isolated verter and a leaf, respectively. A
tree is a connected graph containing no cycles. Thus every tree has at least
two leaves. It is well-known that every connected graph GG contains a tree.
For a tree T in a connected graph, we always assume that T is a spenning
connected subgraph without cycle.

We denote by §(G) and A(G) the minimum and maximum degrees of the
vertices of G.

A cut-edge of a graph is one whose deletion results in one more component.
Sometimes, a cut-edge is also called a bridge. Clearly, every edge of a tree is
a cut-edge.

A matching M of a graph G is a subset of E(G) such that any two edges
of M have no end-vertices in common. A matching of k edges is called a
k-matching. Let d be a non-negative integer. A matching is called a defect-d
matching if it covers exactly |V(G)| — d vertices of G. A defect-0 match-
ing is called a perfect matching and defect-1 matching is called near-perfect
matching.

A perfect matching is also referred as 1-factor since it is a 1-regular sub-
graph. If a graph has 1-factors, it is called 1-factorable. There are probably
equal numbers of people using “perfect matchings” rather than “l-factors”,
so we will use them non-discriminatively.

If an edge e is contained in a 1-factor, we called e an allowed edge. If an
edge f does not lie in any 1-factor, then f is forbidden.

A covering of a graph G is a subset S of V(G) such that every edge of
G has at least one end in S. A covering S* is a minimum covering if G has
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no covering S with |S| < |S*|. The order of a minimum covering is called
covering number and denoted by 5*(G).

A graph G is said to be bicritical if for every pair of distinct vertices u
and v, G — {u,v} has a 1-factor. A graph G is factor-critical if G — u has a
1-factor for every u € V(G) (see Fig. 1.1).

Fig. 1.1 (a) a factor- ¥
critical graph and (b) a
bicritical graph. (2) (b)

A graph G is called n-factor-critical if the subgraph G — S has a 1-factor
for all n-subset § of V(G).

Clearly, the concept of n-factor-criticality is a generalization of bicriticality
and factor-criticality. That is, factor-critical graphs and bicritical graphs are
n-factor-critical graph when n = 1 and 2, respectively.

From the definitions, we can see the following result easily.

Proposition 1.1.1.

(a) A graph G is factor-critical if and only if the join of G and K., GV K;,
s bicritical;

(b) a graph G is bicritical if and only if G — v is factor-critical for every
v € V(G).

Let G be a connected graph with a 1-factor and |{V(G)| > 2k + 2. If each
k-matching of G is contained in a 1-factor, we call G a k-ertendable graph.
For convenience, a 0-extendable graph means a graph which has a 1-factor.

Clearly bicritical graphs are 1-extendable. A 3-connected bicritical graph
is called a brick. A brace is a 2-extendable bipartite graph (i.e., 3-connected
2-extendable bipartite graph). The examples of a brick and a brace are given

in Fig. 1.2.
Fig. 1.2 (a) a brick and

(b) a brace. (a) (b)

Factors in a graph are spanning subgraphs satisfying some given proper-
ties. A k-factor of a graph G is a spanning subgraph H such that dg(z) = &
for every z € V(G).

Let f be an integer-valued function defined on V(G), i.e.,
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f: V(@) -2t ={0,1,2,...},

then a spanning subgraph H such that dy(z) = f(z) for all z € V(G) is
called an f-factor.

A more general factor is so-called (g, f)-factors: for two functions g, f :
V(G) — Z, a spanning subgraph H is called a (g, f)-factorif g(z) < dpy(z) <
f(z) for all £ € V(H) (see an example in Fig. 1.3). In addition, if g(z) = f(z)
(mod 2) for all z € V(G), a (g, f)-factor F with dr(z) = f(z) is called a
(g, f)-parity-factor.

For two positive integers a,b, let g(z) = a and f(z) = b for all vertices
z € V. Then (g, f)-factors are called [a, b]-factors.

Fig. 1.3 A (g, f)-factor
with g(x) =1 and f(z) =
3forallzeV.

A set § C V is a dominating set of G if every vertex in V is either in S
or is adjacent to a vertex in S. If A and B are subsets of V, we say that A
dominates B if every vertex of B has a neighbor in A or is a vertex of A;
we also say that B is dominated by A. The dominating number, v(G), of G
is the minimum cardinality of a dominating set. A set S is 2-dominating if
every vertex of V is either in S or is within distance 2 to S.

We only define the most often used terms of the book in this section. For
other undefined terms, we follow Bollobas [83].

1.2 Matchings in bipartite graphs and augmenting path

In this section, we focus on matchings and perfect matchings in bipartite
graphs, which is the starting point of matching theory. This is not surprising
since matchings in bipartite graphs are closely related to other disciplines
of mathematics (e.g., matrix theory and set theory) and many application
problems (e.g., the job assignment problem). Furthermore, the properties
and techniques of matchings in bipartite graphs also motivate the research
of matchings in non-bipartite graphs.

For a matching M, a vertex z of G is called saturated or covered by M if
z is incident to an edge of M. A matching M is called a mazimum matching
if |M| > |M'| for any matching M’ of G. Clearly, a perfect matching (i.e.,
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a 1-factor) is a maximum matching saturating every vertex of a graph. Of
course, any graph with perfect matchings must have even number of vertices.

In many applications, one wishes to find a matching in a bipartite graph
G = (X,Y) which covers every vertex in X. Necessary and sufficient condi-
tions for the existence of such a matching were proven by Hall (1935). To this
day, Hall’s Theorem remains one of the most widely applied graph-theoretic
results. The proof here is due to Rado.

Theorem 1.2.1 (Hall’s Theorem, Hall (1935)). Let G = (X,Y) be a
bipartite graph. Then G has a matching saturating all vertices of X if and
only if for any S C X,

IN(S)| = |S]- (1.1)

Proof. The necessity is clear.

Let G be a minimal bipartite graph satisfying the condition (1.1). It suffices
to show that G consists of | X| independent edges.

Otherwise, G contains two edges, 1y and zay, where 1,22 € X, 11 #
z2 and ¥ € Y. From the minimality, the deletion of either of these edges
invalidates (1.1). Thus there are two subsets X;, X C X such that fori =1,2
we have |[N(X;)| = | X;|, and z; is the only vertex of X; adjacent to y. Then

IN(X1) N N(X2)| 2 IN(X1 — {z1}) " N(Xz — {z2})| +1
> [N(X1NXa)[+12|X1NXs|+1.

But this implies the following contradiction:

IN(X1U X2)| = |N(X1) UN(X3)|
= |N(X1)| + IN(X2)| = [N(X1) N N(X2)|
<X+ X - XN Xa| -1
= |X1 UXzI —1.

O

Note that Hall’s Theorem also holds for multigraphs. The above result is
the usual version of matching characterization in bipartite graphs. However,
we present the next version in terms of isolated vertices, which has a strong
similarity to Tutte’s 1-Factor Theorem referred to later. Recall that i(G)
denotes the number of isolated vertices in G.

Theorem 1.2.2 (Hall’s Matching Theorem, Hall (1935)). Let G =
(X,Y) be a bipartite graph. Then G has a perfect matching if and only if
|X] = Y] and for any S C X,

i(G - 8) < |8].
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Remark 1.2.1. For every bipartite graph G = (X,Y), with |X| > |Y| and
maximum degree A, Kénig (1916) showed that there exists A-regular bipar-
tite supergraph G’ = (X,Y”’) (a multigraph is allowed) such that Y C Y’ and
G is a subgraph of G’.

Corollary 1.2.1 (Koénig (1916)). Every r-regular bipartite graph G can be
decomposed into T edge-digjoint 1-factors. In particular, G has a 1-factor.

Corollary 1.2.2. Every bipartite graph G has a mazimum matching which
covers all the vertices of mazimum degree.

Proof. By Remark 1.2.1, there exists a A(G)-regular supergraph G’ contain-
ing G. From Corollary 1.2.1, G’ has a 1-factor and so G has a matching covers
all the vertices of maximum degree. In turn, this matching can be augmented
to a maximum matching of G. O

A family of graphs which share many properties with bipartite graphs was
discovered by Fulkerson, Hoffman and McAndrew [219]. A graph G is said
to have the odd cycle property (OCP in short) if every pair of odd cycles in
G either has a vertex in common or is joined by an edge. We shall discuss
the relation between this property and the existence of factors in much more
details in Section 2.2.

The following is a generalization of Corollary 1.2.1.

Theorem 1.2.3. If G is a r-regqular graph of even order with the odd cycle
property, then G has a 1-factor.

Let M be a matching in a graph G. An M-alternating path or cycle in G is
a path or cycle whose edges are alternately in M and E(G) — M. Note that
an M-alternating path might or might not start or end with edges of M. If
neither its origin nor its terminus is covered by M, the M-alternating path
is called an M-aeugmenting path (see Fig. 1.4).

Fig. 1.4 An M-

alternating cycle C =
ablk, an M-alternating e f !
path P = defghi and
an M-augmenting path
P’ = cdefghij. g h i

The idea of M-augmenting path is first introduced by Berge (1957). Today,
it has become a very matured and standard technique in the study of factor
theory. There are many variations of augmenting path defined for different
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problems, we shall see all kinds of variations in the coming chapters. It is
not an overstatement that augmenting path technique is the most powerful
technique not only in the study of matchings but also for the study of all
factors.

Berge (1957) used augmenting path to give a characterization of maximum
matching.

Theorem 1.2.4 (Berge (1957)). A matching M in a graph G is mazimum
if and only if G has no M -augmenting paths.

Proof. Let M be a matching in G. Suppose that G contains an M-augmenting
path P. Then M’ := MAE(P) is a matching in G, and |M’| = |M|+1. Thus
M is not a maximum matching.

Conversely, suppose that M is not a maximum matching, and let M” be
a maximum matching in G, then |M"| > |M|. Set H := G[MAM"]. Then
each vertex of H has degree one or two in H, for it can be incident with at
most one edge of M and one edge of M. Consequently, each component of
H is either an even cycle with edges alternately in M and M", or else a path
with edges alternately in M and M".

Because |M’| > |M|, the subgraph H contains more edges of M" than of
M, and therefore some path-component P of H must start and end with edges
of M". The origin and terminus of P, being covered by M", are not covered
by M. The path P is thus an M-augmenting path in G, a contradiction. O

Hall’s Theorem can be restated in a more general version. We denote the
matching number, the size of a maximum matching, by u(G).

Theorem 1.2.5. Let G = (X,Y) be a bipartite graph, M a matching in G,
and U the set of M-unsaturated vertices in X. Then

(a) for any subset S of X, |U| > |N(S)| — |S|; and
(b) |U| = |N(S)| — |S] if end only if M is a mazimum matching of G.

Furthermore, the matching number of G is given by
u(@) = [X| — max{|S| - |N(5)| | § € X}.

The expression for u(G) is known as the Konig-Ore Formula.

Next, we investigate the properties of matching transformation in bipartite
graphs. That is, given two matchings, we can start with one and transform
gradually to another one through the operation of symmetric difference.

Theorem 1.2.6. A mazimum matching M of a graph G can be obtained from
any other mazimum matching M’ by a sequence of transfers along alternating
cycles and paths of even lengths.

Proof. From the proof of Theorem 1.2.4, every component of GIM'AM] is
either an alternating cycle or an alternating even path relative to M’. Chang-
ing M’ in each component in turn will transform M’ into M. O



