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What Godel proved was that . . . any consistent
axiomatization is incomplete . . . . One has, at
this stage, simply to admit that mechanism is
not a solution to the problem of the universe
but a strategy, just as induction and all
previous methods of doing science were.

JACOB BRONOWSKI
in The Origins of Knowledge
and Imagination

Introduction

A membrane surrounds all living cells. It is not easy to conceive how life in all
its manifestations could have evolved without a membrane that separates com-
ponents of vital metabolic processes from the external milieu; that is, the mem-
brane provides an identity to a cell. Since a cell depends upon and communi-
cates with the external environment, its membrane must allow the passage of
certain molecules while preventing the passage of others. Thus cell membranes
are sites of a large variety of cellular processes (Fig. 11) ranging from
permeability, transport and excitability to intercellular interaction, morpholo-
gical differentiation, and fusion. In this text we discuss the structural characteris-
tics and the functional consequences of biological membranes.

Numerous models have been proposed to articulate the organization of lipids
and proteins in biomembranes (see Jain and White, 1977, for a review of these
models). The consensus emerging out of such studies may be summarized in
the following generalizations:

1. Biological membranes are essentially a two-dimensional matrix -a pre-
dominantly phospholipid bilayer structure interrupted by proteins. Thus the
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Introduction 3

ifterior of the membrane is much less polar than the interfacial region. Such
an arrangement is a direct consequence of the “hydrophobic effect.”

2. The components of the membrane matrix are held together largely by
noncovalent forces. For example, the acyl chains of phospholipids interact
with each other and with proteins by van der Waals interactions, and the inter-
actions of the polar groups at the interface are expected to be largely of the
coulombic and hydrogen-bonding types.

3. The uncatalyzed exchange of components from one interface of the
membrane to the other is slow. This gives rise to a morphological and functionat
asymmetry between the two interfaces.

4. Specific interactions between the membrang components lead to a selec-
tive ordering and segregation of the components in the plane of the membrane.

5. A consequence of segregation of components in the plane of a membrane
is the establishment of a long-range order and cooperativity within the
segregated domains. The regions of discontinuity and mismatch would exist
at the patch boundaries.
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Fig. 1-2. Structural framework of typical biomembrane in various degrees of schematiza-
tion. (a) Organized lipid molecules (white circles) may form discrete plates that are separ-
ated from each other by regions of relatively disorganized lipids (hatched circles). The
composition and the resulting system properties of such regions may be quite different.
(b) The organized and disorganized regions arc viewed as plates, cach having characteristic
system properties specified by its components. Some plates may extend through the bilayer.
The size, shape, and lifetime of plates and the mobility, exchange rate, and residence times
of components within these plates has not been defined. However these parameters are
expected to vary significantly from plate to plate and from membrane to membrane. The
size of the plates may, for exampie, be up to several thousand molecular diameters. (c)
Various molecules (within the bilayer of biomembrane) interact hydrophobically and are
distributed asymmetrically. Moreover there is also a distinct long-range organization (over
several hundred molecular diameters) of both lipids and proteins. Thus bilayers with dis-
tinct organizational features and composition may coexist within the plane of a biomem-
brane. These organizational changes may arise from distinct molecular conformations and
specificity (or lack of it) of intermolecular interactions among components.

N




4 Introduction

Fig. 1-2. Continued.

6. The molecules within the membrane matrix can undergo a variety of
motions: rotational motion along the axis perpendicular to the interface; trans—
gauche conformational change in the acyl chains that give rise to an increased
segmental mobility of chains toward the center of the bilayer; and lateral
diffusion of the components in the plane of the membrane. The mobilities of
the various components in a membrane appear to differ more than what would
be expected on the basis of the size of the components.

A model of membrane structure embodied in these generalizations is
schematized in Fig. 1-2. This should serve to illustrate the various phenomena
and processes discussed in this book.
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Ours is a strange profession

We who trap the cells where life beats

And strike them on a diamond

Transmuting them to flakes of gold and silver
Which sparkle as they float upon the water
And we coarse fishermen

Caich them in our little nets

We speak to them by hurling at them
Elemental particles

And they answer in a language

That we can only vaguely understand

D. L. RINGO

Electron
Microscopy
of Membranes

Although the presence of a boundary layer surrounding cells had been detected
,in earlier experiments, it was not until the electron microscope became applic-
able to the study of biological materials that cellular membranes could be
visualized. Electron images of membranes were however only attained after
an extensive and drastic regimen of speciman preparation. A clear interpretation
of the relation of such images to living membranes could not be readily made
since numerous sources of artifact were introduced. The relatively poor pene-
trating power of electrons dictated the use of extremely thin sections of mem-
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Fig. 2-1. Transmission electron microscopy of a thin section through to opposing liver
parenchymal cells. Trilaminar profiles of two adjacent plasma membranes are evident
(arrows) as well as those of endoplasmic reticulum (ER) and mitochondria (M). Mag. X
272,500. -

Fig. 2-2. Higher-magnification micrograph through portions of two cytoplasmic vacuoles
(V). Mag. X 272,500.



8 Electron Microscopy of Membranes

branes, for which plastic resins were the only suitable internal support.
Dehydrated specimans were required because an electron beam can be properly
focused only under vacuum and the beam itself can be highly damaging to thin
specimens. The inherent low contrast in electron density of membranes required
contrast enhancement with heavy metal stains. The culmination of these
preparative procedures was the typical “railroad track™ image that is a constant
characteristic of both plasma and intracellular membranes (Figs. 2-1 and 2-2).
Although this was sufficient to elucidate the form and contour of membranes.
ufftertainties persisted as to what the railroad track represents in terms of
membrane structure. Many subsequent efforts have been directed at determining
the effects of preparative procedures on membranes and identifying artifacts.
These efforts in interpretation have recently been aided by innovative techniques
and specimen preparation in which treatment of fresh membranes is completcly
different, thus varying the sources from which artifacts may arise.

MEMBRANES IN ULTRATHIN SECTIONS
Structural Stabilization

Since cells and the membranes comprising them are extremely fragile entities,
their dehydration and subsequent embedding in plastic require prior fixation
or stabilization of structure. Fixation is accomplished by crosslinking macro-
molecules, which partially immobilizes them and renders them insoluble. Thus
when fixed cells are infiltrated with organic solvents and plastic, cellular macro-
molecules (primarily proteins) are not extracted or translocated. In some cases
fixation is efficient enough to prevent denaturation of proteins, and a signifi-
cant degree of enzyme activity is retained.

Aldehydes, both forrgaldehyde and glutaraldehyde, are required for the degree
of structural stabilization necessary for electron-microscopic observation.
Glutaraldehyde is the most effective in this regard. It forms inter- and intra-
molecular links between amino acids, yielding rigid heteropolymers of protein.
This results in minimal protein conformational changes as confirmed by X-ray
diffraction “studies and attests to the ability of glutaraldehyde to stabilize
without distortion. The tertiary structure of many enzymes is sufficiently
preserved so that activity is retained. Glutaraldehyde also increases membrane
permeability, which facilitates subsequent infiltration by plastic.

Postfixation with osmium tetroxide further reduces the loss of membrane
constituents, primarily phospholipids. In addition to functioning as a fixative,
0504 imparts electron density to the membrane owing to its heavy metal com-
ponent, OsO, is believed to form cyclic osmate mono— and diesters involving
double bonds of adjacent unsaturated fatty acid chains of phospholipids.
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Membranes thus fixed are very resistant to extraction by organic solvents,
and the translatiopal movement of membrane lipids is also greatly restricted.
The fact that osmicated membranes appear as an electron-transparent layer
sandwiched between two electron-dense layers would seem to be inconsistent
with the binding of osmium to acyl chains buried in the hydrophobic interior
of membranes. It is possible however that osmium may bind secondarily to the
polar regions of phospholipids and consequently would be more tightly packed
and collectively more electron dense in those regions. The exact mechanisms
of osmication are complex and not well understood. In any event, the railroad
track image of membranes does not depend on the preseace of osmium, and the
electron-dense and electron-transparent lamina of membranes may be better
correlated with hydrophilic and hydrophobic regions, respectively.

Embedding

Fixed membranous specimens are dehydrated in organic solvents such as acetone
or ethanol. These reagents serve as intermediary solvents that facilitate the
replacement of the cell's aqueous components by plastic. They are particularly
troublesome in terms of alteration of tissues and membranes since they can
extract membrane phospholipids and cholesterol. The amount of extraction can
be minimized by prior fixation procedures. It is somewhat surprising that such
extraction has a minimal effect on electron images of membranes. It is possible
that structural stabilization by fixation is sufficient to allow the extracted com-
ponents to be replaced with plastic, thereby preventing structural collapse of the

bilayer. Proteins are also denatured and extracted fo some degree by these sol-
" vents. However, other than alterations in contrast and dimension, no particular
effect on the railroad track image of membranes can be attributed to these
extraction artifacts. '

Impregnation with and subsequent polymerization of plastic resins supports
tissues and membranes internally and imparts strength for thin sectioning.
Low-viscosity methacrylates easily penetrate specimens, but they form linear
polymers that are easily etched or sublimed by the electron beam. Etching or
crosscut membranes may result in ridge-like elevations that collapse and distort
the electron image. Three-dimensional polymers such as the epoxides aré
superior in this regard since they are more resistant to etching. Epoxides are
also capable of extracting lipid, however, and further extraction artifacts may
be introduced with embedding. As an alternative, watersoluble extracts of
epoxides can be employed to minimize lipid extraction. Also, water-soluble
resins such as carbohydrazide can be copolymerized with aldehydes and can be
used to directly infiltrate tissues. This eliminates the dehydration procedures
and results in tissues that are sufficiently hardened to withstand sectioning.



10 Electron Microscopy of Membranes
Sectioning and Staining

For most membrane-related studies sections 500 A thick or less (gray inter-
ference color) are cut with glass or diamond knives. These sections may be
observed directly, but the contrast imparted to membranes by osmium alone
is very low, especially in thinner sections. Counterstaining the sections with
heavy metal salts is usually required in order to obtain a sharp, well-defined
image of membranes. Sections are commonly counterstained with aqueous
uranyl acetate followed by alkaline lead citrate staining. Uranyl ions react with
phosphate and carboxyl groups and possibly with amino acids of proteins. The
affinity of embedded membranes for lead salts is not well understood. However
lead salts are fhought to bind to sites previously occupied by osmium. Contrast
enhancement by counterstaining facilitates clear imaging of membranes at the
higher resolution provided in very thin sections.

Negative Staining

The membranes of organelles and other isolated membrane systems can be
visualized by electron microscopy without the need for dehydration, embedding,
and sectioning. In these procedures, heavy metal salts such as phos-
photungstic acid, ammonium molydate, and uranyl acetate are employed to
impart negative contrast to isolated ‘'membrane systems deposited on coated
grid supports. These stains, when applied to such preparations, dry and concen-
trate around the membranes, and their outline thus exhibits a negative or
electron-transparent profile (Fig. 2-3). Although this technique may circumvent
sources of artifact introduced by preparation for sectioning, new complications
arise which dictate care in interpretation of the resulting images. Isolated inner
mitochondrial membranes exhibit $talked globules on their surfaces when
negatively stained that are not evident in embedded and sectioned mitochondria.
Although the globules can be isolated and as such exhibit ATPase activity,
their natural form as globules is questionable. They may be an artifact resulting
from osmotic shock of the membrane during drying of the negative stain.

Electron-Dense Tracers

In addition to direct staining of membranes, various substances can be utilized
to demarcate membrane surface contours, indicate junctional complexes
between cells, identify carbohydrate-rich surface coats and antigenic sites, and
trace membranes that have been internalized by endocytosis. Some of these
substances are intrinsically electron dense or selectively stainable with electron
dense stains, and others may act as mordants which enhance the affinity of
. membranes for heavy metal salts.



