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Preface

Modern Spectroscopy has been written to fulfil a need for an up-to-date text
on spectroscopy. It is aimed primarily at a typical undergraduate audience in
chemistry, chemical physics, or physics in the United Kingdom and at both
undergraduate and graduate student audiences elsewhere.

Spectroscopy covers a very wide area which has been widened further
since the mid-1960s by the development of lasers and such techniques as
photoelectron spectroscopy and other closely related spectroscopies. The
importance of spectroscopy in the physical and chemical processes going on
in planets, stars, comets, and the interstellar medium has continued to grow
as a result of the use of satellites and the building of radiotelescopes for the
microwave and millimetre wave regions.

in planning a book of this type | encountered three major problems. The
first is that of covering the analytical as well as the more fundamental aspects
of the subject. The importance of the applications of spectroscopy to analytical
chemistry cannot be overstated but the use of many of the available techniques
does not necessarily require a detailed understanding of the processes
involved. 1 have tried to refer to experimental methods and analytical appli-
cations where relevant. .

The second problem relates to the inclusion, or otherwise, of molecutar
symmetry arguments. There is no avoiding the fact that an understanding of
molecular symmetry presents a hurdle (although 1 think it is a low one)
which must be surmounted if selection rules in vibrational and electronic
spectroscopy of polyatomic molecules are to be understood. This book sur-
mounts the hurdle in Chapter 4 which is devoted to molecular symmetry but
which treats the subject in a non-mathematical way. For those lecturers and
students who wish to leave out this chapter much of the subsequent material
can be understood but, in some areas, in a less satisfying way.

The third problem also concerns the choice of whether to leave out certain
material. In a book of this size it is not possible to cover all branches of
spectroscopy. Such decisions are difficult ones but | have chosen not to
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xiv Preface

include spin resonance spectroscopy (n.m.r. and e.s.r.), nuclear quadrupole
resonance spectroscopy (n.q.r.), and Méssbauer spectroscopy. The exclusion
of these areas, which have been well covered in other texts, has been’caused,
| suppose, by the inclusion, in Chapter 8, of photoeiectron spectroscopy
(ultraviolet and X-ray), Auger electron spectroscopy, and exiended X-ray
absorption fine structure, including applications to studies of solid surfaces,
and, in Chapter 9, the theory and some examples of lasers and some of their
uses in spectroscopy. Most of the material in these two chapters will not be
found in comparable texts but is of very great importance in spectroscopy
today.

My understanding of spectroscopy owes much to having been fortunate in
working in and discussing the subject with Professor I. M. Mills, Dr. A. G.
Robiette, Professor J. A. Pople, Professor D. H. Whiffen, Dr. ). K. G. Watson,
Dr, G. Herzberg, Dr. A. E. Douglas, Dr. D. A, Ramsay, Professor D. P. Craig,
Professor ). H. Catlomon, and Professor G. W. King {in more or less reverse
historical order), and 1 am grateful to all of them.

When my previous book High Resolution Spectroscopy was published by
Butterworths in 1982 | had it in mind to make some of the subject matter
contained in it more accessible to students at a later date. This is what | have
tried to do in Modern Spectroscopy and | would like to express my appreci-
ation to Butterworths for allowing me to use some textual material and,
particularly, many of the figures from High Resolution Spectroscopy. New
figures were very competently drawn by Mr. M. R. Barton.

Although | have not included High Resolution Spectroscopy in the bib-
liography of any of the chapters it is recommended as further reading on all
topics.

Mr. A. R. Bacon helped greatly with the page proof reading and | would
like to thank him very much for his careful work. Finally, | would like to
express my sincere thanks to Mrs. A. Gillett for making such a very good job
of typing the manuscript.

}. Michael Hollas



Units, dimensions, and conventions

Throughout the book | have adhered to the Sl system of units, with a few
exceptions. The angstrom (A) unit, where 1 A = 107 9m, seems to be
persisting generally when quoting bond lengths, which are of the order of 1 A.
I have continued this usage but, when quoting wavelengths in the visible and
near-ultraviolet regions, | have used the nanometre, where 1 nm = 10 A. The
angstrom is still used sometimes in this context but it seems just as convenient
to write, say, 352.3 nm as 3523 A.

In photoelectron and related spectroscopies ionization energies are
measured. For many years such energies have been quoted in electron volts,
where 1 eV = 1.602 177 38 x 107 '], and | have continued to use this unit.

Pressure measurements are not often quoted in the text but the unit of Torr,
where 1 Torr = 1 mmHg = 133.322 387 Pa, is a convenient practical unit
and appears occasionally.

Dimensions are physical quantities such as mass, length, and time and
examples of units corresponding to these dimensions are the gram (g),
metre (m), and second (s). If, for example, something has a mass of 3.5 g
then we write

m=35g

Units, here the gram, can be treated algebraically so that, if we divide both
sides by ‘g’, we get

m/g = 3.5

The right-hand side is now a pure number and, if we wish to plot mass, in
grams, against, say, volume on a graph we label the mass axis ‘m/g’ so that
the values marked along the axis are pure numbers. Similarly, if we wish to
tabulate a series of masses, we put ‘m/g’ at the head of a column of what are
now pure numbers. The old style of using ‘m(g) * is now seen to be incorrect
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xvi Units, Dimensions and Conventions

as, algebraically, it could be interpreted only as m x g rather than m + g
which we require.

An issue which is still only just being resolved concerns the use of the word
‘wavenumber’. Whereas the frequency v of electromagnetic radiation is related
to the wavelength A by

where c is the speed of light, the wavenumber ¥ is simply its reciprocal:

_—

LY
Since ¢ has dimensions of LT~" and \ those of L, frequency has dimensions
of T and often has units of s~ (or hertz). On the other hand, wavenumber

has dimensions of L~ and often has units of cm~'. Therefore
p =153 5! {or hertz)

is, in words, 'the frequency is 15.3 reciprocal seconds (or secand-minus-one
or hertz) *, and

v = 20.6 cm™'

is, in words, 'the wavenumber is 20.3 reciprocal centimetres (or centimetre-
minus-one)’. All of this seems simple and-straightforward but the fact is that
many of us would put the second equation, in words, as ‘the frequency is
20.3 wavenumbers'. This is quite illogical but very common — although not,
I hope, in this book.

Another illogicality is the very common use of the symbols A, B, and C for
rotational constants irrespective of whether they have dimensions of frequency
or wavenumber. It is bad practice to do this, but although a few have used
A, B, and C to imply dimensions of wavenumber, this excellent idea has only
rarely been put into practice and, regretfully, | go along with a very large
majority and use A, B and C whatever their dimensions.

The starting points for many conventions in spectroscopy are the paper by
R. S. Mulliken in the Journal of Chemical Physics (23, 1997, 1955) and the
books of G. Herzberg. Apart from straightforward recommendations of sym-
bols for physical quantities which are generally adhered to, there are rather
more contentious recommendations. These include the labelling of cartesian
axes in discussions of molecular symmetry and the numbering of vibrations
in a polyatomic molecule which are often, but not always, used. In such
cases it is important that any author makes it clear what convention is being
used.
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The case of vibrational numbering in, say, fluorobenzene illustrates the
point that we must be flexible when it may be helpful. Many of the vibrations
of fluorobenzene strongly resemble those of benzene. In 1934, before the
Mulliken recommendations of 1955, E. B. Wilson had devised a numbering
scheme for the thirty vibrations of benzene. This was so well established by
1955 that its use has tended to continuc ever since. In fluorobenzene there
is the further complication that, although Mulliken’s system provides it with
its own numbering scheme, it is useful very often to use the same number for
a benzene-like vibration as it has in benzene itself — for which there is a
choice of Mulliken’s or Wilson’s numbering! Clearly not all problems of
conventions have been solved, and some are not really soluble, but we should
all try to make it clear to any reader just what choice we have made.

One very useful convention which was proposed by J.C.D. Brand, }. H.
Callomon, and J.K.G. Watson in 1963 is applicable to electronic spectra of
polyatomic molecules, and | have used it throughout this book. In this system
324, for example, refers to a vibrational transition, in an electronic band
system, from v = 1 in the lower to v = 2 in the upper electronic state where
the vibration concerned is the one whose conventional number is 32 It is a
very neat system compared to, for example, (001) — (100). which is still
frequently used for triatomics to indicate a transition from the v = 1 level in
v, in the lower electronic state to the v = 1 level in v, in the upper electronic
state. The general symbolism in this system is (vivivi) — (VIVivi). The alter-
native 3§ 19 fabel is much more compact but is little used for such small
molecules. For consistency { have used this compact symbolism throughout.

Although it is less often done, I have used an analogous symbolism for pure
vibrational transitions for the sake of consistency. Here NY. refers to a
vibrational (infrared or Raman) transition from a lower state with vibrational
quantum number v" to an upper state v' in the vibration numbered N.
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CHAPTER 1

Some important results in quantum mechanics

1.1 Spectroscopy and Quantum Mechanics

Spectroscopy is basically an experimental subject and is concerned with the
absorption, emission, or scattering of electromagnetic radiation by atoms or.
molecules. As we shall see in Chapter 3, electromagnetic radiation covers a
wide wavelength range from radio waves to y-rays and the atoms or molecules
may be in the gas, liquid, or solid phase or, of great importance in surface
. chemistry, adsorbed on a solid surface.

Quantum mechanics, on the other hand, is a theoretical subject relating to
many aspects of chemistry and physics, but particularly to spectroscopy.

Experimental methods of spectroscopy began in the more accessible visible
region of the electromagnetic spectrum where the eye could be used as the
detector. In 1665 Newton had started his famous experiments on the dispersion
of white light into a range of colours using a triangular glass prism. However
it was not until about 1860 that Bunsen and Kirchhoff began to develop the
prism spectroscope as an integrated unit for use as an analytical instrument.
Early applications were the observation of the emission spectra of various
samples in a flame, the origin of flame tests for various elements, and of the
sun.

The visible spectrum of atomic hydrogen had been observed both in the
solar spectrum and in an electrical discharge in molecular hydrogen many
years earlier, but it was not until 1885 that Balmer fitted the resulting series
of lines to a mathematical formula. In this way began the close relationship
between experiment and theory in spectroscopy, the experiments providing
the results and the relevant theory attempting to explain them and to predict
results in related experiments. However theory ran increasingly into trouble
so long as it was based on classical newtonian mechanics until, from 1926
onwards, the development by Schrodinger of quantum mechanics. Even after
this breakthrough, the importance of which cannot be overstressed, il is nat,
| think, unfair to say that theory tended to limp along behind experiment.
Data from spectroscopic experiments, except for those on the simplest atoms

1



2 Modern Spectroscopy

and molecules, were easily able to outstrip the predictions of theory which
was almost always limited by the approximations which had to be made in
order that the calculations would be manageable. It was only from about
1960 onwards that the situation changed as a result of the availability of large,
fast computers requiring many fewer approximations to be made. Nowadays
it is not uncommon for predictions to be made of spectroscopic and structural
properties of fairly small molecules which are comparable in accuracy with
those obtainable from experiment.

Although spectroscopy and quantum mechanics are closely interrelated it
is nevertheless the case that there is still a tendency to teach the subjects
separately while drawing attention to the obvious overlap areas. This is the
attitude | shall adopt in this book, which is concerned primarily with the
techniques of spectroscopy and the interpretation of the data which accrue,
References to texts on quantum mechanics are given in the bibliography at
the end of this chapter.

1.2 The Evolution of Quantum Theory

During the late nineteenth century evidence began to accumulate that classical
newtonian mechanics, which was completely successfut on a macroscopic
scale, was unsuccessful when applied to problems on an atomic scale.

In 1885 Balmer was able to fit the discrete wavelengths \ of part of the
emission spectrum of the hydrogen atom, illustrated in Figure 1.1, to the
empirical formula

7\-_-’,;7_:“‘4 (‘1)

where G is a constant and n' = 3,4,5, . . . . In this figure the wavenumber*
7 and the wavelength A are used: the two are related by

1

V= X (1.2)
Using the relationship
C
== 1.3
YTX 03
where v is the frequency and ¢ the speed of light in a vacuum, equation (1.1)
becomes
11
V:RH(ZQ—n’z) (14)

tSee Units, Dimensions and Conventions on p. xv,



