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Preface

This book is the fruit of my lectures on “The Theory of Many-Body Systems,”
which I have been teaching for many years in the degree course on Physics at the
University of Trento. As often happens, the outline of the book came from my
students’ notes; in particular, the notes of the students of the academic year 1999-
2000, which were extremely useful to me. Chapter 6, on the Monte Carlo methods,
is the work of Francesco Pederiva, a research assistant in our department. During
the course Francesco, apart from illustrating the method, teaches the students all
the computer programs (continually referred to in this book), by means of practical
exercises in our computational laboratory. In particular, he teaches the Hartree—
Fock, Brueckner—Hartree—Fock, Kohn—-Sham and diffusion Monte Carlo programs
for the static properties, the RPA, and time-dependent HF and the LSDA for Boson
and Fermion finite systems. These programs are available to anyone who is interested
in using them.

The book is directed toward students who have taken a conventional course
on quantum mechanics and have some basic understanding of condensed matter
phenomena. I have often gone into extensive mathematical details, trying to be as
clear as possible, and I hope that the reader will be able to rederive many of the
formulas presented without too much difficulty.

In the book, even though a lot of space is devoted to the description of the
homogeneous systems, such as electron gas in different dimensions, quantum wells
in an intense magnetic field, liquid helium and nuclear matter, the most relevant
part is dedicated to the study of finite systems. Particular attention is paid to
those systems realized recently in laboratories throughout the world: metal clusters,
quantum dots and the condensates of cold and dilute atoms in magnetic traps.
However, some space is also allotted to the more traditional finite systems, like the
helium drops and the nuclei. I have tried to treat all these systems in the most
unifying way possible, hoping to bring all the analogies to light. My intention was to
narrow the gap between the usual undergraduate lecture course and the literature
on these systems presented in scientific journals.



vi Preface

It is important to note that this book takes a “quantum chemist’s” approach
to many-body theories. It focuses on methods of getting good numerical approxi-
mations to energies and linear response based on approximations to first-principle
Hamiltonians. There is another approach to many-body physics that focuses on
symmetries and symmetry breaking, quantum field theory and renormalization
groups, and aims to extract the emergent features of the many-body systems.
This works with “effective” model theories, and does not attempt to do “ab initio
computations.” These two ways of dealing with many-body systems complement
each other, and find common ground in the study of atomic gases, metal clusters,
quantum dots and quantum Hall effect systems, which are the main application of
the book.

I am indebted to many of my colleagues in the Physics Department of Trento
for discussions and remarks. Specifically, I'm grateful to G. Bachelet, D.M. Brink,
S. Giorgini, F. Iachello, W. Leidemann, R. Leonardi, F. Pederiva, G. Orlandini,
S. Stringari, M. Traini, G. Viliani and A. Vitturi. Many aspects of the book were
clarified during my stays in Barcelona, Paris and Palma de Mallorca, where I had
the occasion to discuss many subjects with M. Barranco, A. Emperador, M. Pi, X.
Campi, N. Van Giai, D. Vautherin, Ll. Serra and A. Puente, as well as during the
frequent visits to our department by my friends A. Richter and K. Takayanagi.

Thanks are also due to Irene Diamond, for the English translation of the book.

This book has cost me a great investment in time, which recently has kept me
from other research projects and, above all, from my family. It is dedicated to my
wife, Giovanna, and to my children, Fiorenza, Filippo and Luigi. Filippo has been
of enormous help in editing the figures.

Enrico Lipparini
January 2003



Preface to the Second Edition

In this edition the main changes are a new chapter on the spin—orbit coupling in
semiconductor heterostructures and a considerable expansion of the chapters deal-
ing with trapped atomic gases, density functional calculations, current response
to an electromagnetic field, and the Brueckner—Hartree-Fock and Monte Carlo
approaches.

The spin—orbit (SO) interaction in nanostructures has prompted intense activ-
ity in recent years since it is an essential mechanism for most spintronic devices.
In fact, it links the spin and charge dynamics, opening up the possibility of spin
control through an electric field. Indeed, recent experimental and theoretical inves-
tigations have shown that the SO coupling affects charge transport, far-infrared
absorption, and electronic spin precession in a magnetic field, besides giving rise
to the spin-Hall effect. All these topics are analyzed in the new Chapter 6 of this
edition.

After the first experimental realization of Bose-Einstein condensation in dilute
atomic gases, the field of ultracold gases has become a rapidly growing one. In
the last few years a considerable amount of experimental and theoretical work has
focused on ultracold Fermi gases. The description of the ground state and excited
state properties of these systems has been added in many new sections of the
book.

The illustration of density functional calculations in quantum wires and
molecules has been subjected to much more detailed examination than before. Par-
ticular attention has been given to the description of noncollinear local spin density
approximation calculations in nanostructures in the presence of SO interaction.

The sections illustrating current response to an electric field have been expanded
to give a detailed description of the conductivity problem, with particular empha-
sis on Landauer conductance, magnetoconductivity and spin-Hall conductivity.
A section on the problem of Hall conductivity in graphene has been added.

The Monte Carlo chapter has been revised and expanded to include numerical
applications to trapped Fermi gases and many-nucleon systems. A similar revision
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and expansion has been carried out for the chapter dealing with the Brueckner—
Hartree-Fock theory.

Apart from the above main additions and expansions, the remainder of the book
has undergone slight revisions and corrections.

FEnrico Lipparini
June 2007
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Chapter 1
The Independent-Particle Model

1.1 Introduction

The main purpose of many-body theory in nonrelativistic quantum mechanics is
the study of the properties of the solutions to Schrédinger’s equation with the
Hamiltonian

N o2 N
H= = o Vext(Ti) | + v(ri;), (1.1)
2 (g unted) = 3 vt

which describes a system composed of N identical particles, which interact with an
external field through a one-body potential vexs(r;), and among themselves through
a two-body potential v(r;;).

The simplest model case is when the Hamiltonian contains only one-body terms,
and is referred to as the independent-particle model:

Hy = i (% + vext(ri)). (1.2)

i=1

In this approximation the eigenfunctions of Hy may be written as the product of
single-particle wave functions, each of which satisfies the equation (A= 1)

V2
(—% + Vext (r)) wi(r,0) = erpr(r, o), (1.3)
where k indicates the set of quantum numbers that characterize the single-particle
state, and r and o are the position and spin variables, respectively. A further variable
is introduced in nuclear physics — the isospin 7. In what follows we will indicate as
z the variable set r, o, 7. For example, for electrons in a central external field,

Pk(z) = Pn,t,m(r)Xm, (7). (1.4)



