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PREFACE

Algebra is generous : she often gives more than
1s asked of her.
D’Alembert

The present book comes from the first part of the lecture notes I used for a first-year
graduate algebra course at the University of Minnesota, Purdue University, and Peking
University. The Chinese versions of these notes were published by The Peking University
Press in 1986, and by Linking Publishing Co of Taiwan in 1987.

The aim of this book is not only to give the student quick access to the basic knowledge
of algebra, either for future advancement in the field of algebra, or for general background
information, but also to show that algebra is truly a master key or a ‘skeleton key’ to
many mathematical problems. As one knows, the teeth of an ordinary key prevent it from
opening all but one door, whereas the skeleton key keeps only the essential parts, allowing
it to unlock many doors.

Sometimes I like to think that ‘fashion’ is a space-traveler, while ‘wisdom’ is a time-
traveler. Frequently, the time-traveler only touches a small circle among the elite. Most
people think that Mathematics is dry and difficult. Most mathematicians feel the same way
towards algebra. How unfortunate! When Heisenberg presented his quantum theory, he
had to re-invent matrix theory. Mathematicians, and algebraists especially, should present
the subject more interestingly to attract the attention of the student and the concerned
reader.

I wish to present this book as an attempt to help the student to re-establish the contacts
between algebra and other branches of mathematics and sciences. I prefer the intuitive
approaches to algebra, and have included many examples and exercises to illustrate its
power. I hope that the present book fulfills these goals.

To teach a core course for one semester, the materials of §6, Chapter I, §7, Chapter II,
§4, Chapter III, §3 -§7, Chapter IV, part of §3 and §8 -§9, Chapter V may be omitted.

We wish to thank Jem Corcoran for proof-reading.

T.T.Moh
W. Lafayette, 1992
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CHAPTER |

Set Theory and Number Theory

§1 Set Theory

We shall assume the elementary concepts of set! theory in this book as the union, the
intersection, the inclusion and the mapping. The set theory symbols used in this book will
be listed in the appendix I. ‘

Definition 1.1. Let S and T be sets, p: S — T be a map from the set S to the set T.
If p(s1) = p(s2) implies s, = s, for any two elements s;,s; € S, then we say the map p is
1-1 or injective. If for any given t € T, there isa s € S with p(s) =t, then we say the
map p is onto or surjective. If p is injective and surjective, then we say that p is bijective.

|
One of the most important concepts in the set theory is the cardinal number. We have
the following definition,

Definition 1.2. Let S and T be sets. If there is a bijective map p: S — T, then we say
that S and T have the same cardinality. [

Discussion

(1) If the cardinalities of the set S and the set of integers {1,2,..- ,n} are the same, then
we say the set S is a finite set, and the cardinality of S is n. Otherwise, the set S is said to
be an infinite set. Furthermore, if the cardinalities of the set S and the set of all positive
integers {1,2,--- ,n,---} are the same, then we say that the set S is a countably infinite
set. If a set S is either finite or countably infinite, then we say the set S is countable. If
the set S is not countable, then we say the set S is uncountable.

!Due to German Mathematician Cantor 1874.



2 Algebra

Certainly the set of non-negative integers {0, 1,2, 3,4, - - - } is countable. Furthermore the
set of all integers Z can be listed as {0,—1,1,-2,2,--. ,—4,1,--- }, hence is also countable.

(2) Pigeon hole principle: Given two finite sets S and T with the same cardinality. Let
p be amap S — T. Then p is injective < surjective < bijective.

One may imagine that the set S is a finite set of pigeons and the set T is the set of the
pigeon holes with the same cardinality. Then the above principle says that if every pigeon
gets into a different hole, then every hole is occupied. On the other hand, if every hole is
occupied, then every pigeon must get into a different hole.

(3) In fact, the pigeon hole principle is true only for the finite cardinalities. If a set S is
infinite, then it follows from the set theory (using some form of the aziom of choice) that
there is a countably infinite subset R. It is easy to use the argument of Hilbert’s hotel as
follows to show that the.pigeon hole principle is false: let there be a hotel with countably
infinite many rooms {ry,rs,- - -} filled with guests {g1, g2, --}. Suppose that there appear
countably infinite many new guests {n;,ns,---}. A simple way of management is to ask
the old guest g,, to move to the room r,,,, and assign the new guest n,, to the room ry,,_;.
It is clear that all guests, old or new, will each have a room. Imitating this example, the
reader will have no trouble to set a mapping p: R — R which is injective while not
surjective. Furthermore, we may extend the map p to S by defining p(s) = s for all s ¢
R. Then it is easy to see the extension of p is injective while not surjective. On the other
hand, we may require the first two guests g;, g, to stay in the first room r;, while the guest
gm stays in the room r,,_; for all m > 3. Then we construct a map which is surjective
while not injective. B

Theorem 1.1. Let the sets S; be countable sets for i = 1,2,--.. Then the union set
S= UU;2,S: is a countable set.

Proof. Let the set S; = {a;1,ai2,- - ,aj,--- }. We shall use the following triangle counting
to form a sequence,

‘111,012,/013,"' ,alj/,r'"
G21,022,023, - ,a2j5," "
il

7
a3z),Qa32,033, " ,a3;5," "

77/ .....

........................

In other words, let us define a sequence {c;,c3, - ,ck,-:-} with ¢ = a;; where k =
((t+7—1)(i+37 —2)/2) + j. In this sequence let us delete all c; which equals to ¢, for
some n < k. Then it is obvious that the set of the deleted sequence is the union set S.
Thus we establish that the union set S is countable. [}
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Corollary. The set of rational numbers Q is countable.

Proof. We always have Q= JiZ, $Z, while }Z is a countable set for each i. Our Corollary
follows from the preceding Proposition. [

Theorem 1.2. The set of real numbers R is uncountable.

Proof. Suppose that the set of real numbers R is countable, i.e., R= {ri,re, oo yriy -
We will use the following diagonal counting to deduce a contradiction.
Let r; be expressed as the decimal number r; = a;.b;1b;; - - - bij - - -, where a; is the integer

part of r; and 0 < b;; < 9. We have the following diagram,
r1=a1.bi1byp- - - byj- - -
T2=0a3.b2; b3 - 'sz' Y3
T3=0.3.b3]b32' .. st ..

Although there are some ambiguities about the decimal expressions of the real numbers,
i.e., 2.340000- - - = 2.339999- - -, however, it will not interfere with the following arguments.
Let the real number r = 0.cyc; - - ¢; - -- be defined ¢; = 5 if b;; # 5, otherwise ¢; = 4. Then
r is a real number which is not in the list {ry,ry, -+ ,r;,--- }. Thus we establish that the
set of real numbers R is not countable. [ |

In Algebra the processes of taking the “direct product” and “quotient” are commonly
used. Their definitions are given as follows,

Definition 1.3. Let {S;}, i €I, be a collection of sets S;. Then the direct product of
the set {S;}, [I;cr Si, is defined to be the set {(s;)icr : si € S;}, i.e., the set of all maps
s : I = ;s Si with s(2) = s; € S;. The set I will be called as the indez set of the
direct product. If the index set 1 is the set of positive integers 1, sometimes we write the
elements of the direct product as the sequences {s;,s,---}. |

Definition 1.4. Let T and I be sets, and let T;, i €I, be subsets of T such that T is a
disjoint union of T, i.e., T= UierTi and T; (\T; = @ fori # j, then the set of the subsets
{T;} is called a quotient set of T. ]

Discussion

(1) Let T be the set of the people of a country. According to the law, the set T may
be separated into the subsets: T = the set of all juveniles and T, = the set of all adults.
Then {T;, T;} is a quotient set of T with two elements.

(2) Another way to discuss the quotient set is through the concept of equivalence relations
which is defined as follows. A relation “~” is said to be an equivalence relation if and only
if the following conditions are satisfied,

(r) Reflexion: ¢t ~ ¢ for all t € T.
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(s) Symmetry: t ~ s => s ~ .
(t) Transition: ¢t ~ 8,8 ~7 =>t ~ .

(3) Let {T;} be a quotient set of T. Then we may define a relation “~” as follows,
t~ s <=t,s € the same T;

Then it is easy to see that the relation = is indeed an equivalence relation.

" (4) Suppose that we are given an equivalence relation ~. Let the subset T, be defined
as Ty = {s: s ~ t}. Then it is easy to see that T is a disjoint union of {T,}. Fence {T,}
is a quotient set of T. [}

To sum up the above discussions (3) & (4), we have the following new definition,

Definition 1.4*. Let “~” be an equivalence relation on a set T. Let T, = {s : s ~ t}.
The subset T, is called an equivalence subset of T. Then {T,} is a called the quotient set
of T with respect to the relation “~”. ]

Let us now introduce one of the axioms, Mathematical induction, for the set of positive
integers Z as follows, for a detailed discussion, the reader is referred to Appendix II.
Mathematical induction: Let {P(i)}icz, be a set of statements indexed by the set of
positive integers Z . If we can verify that

(a) the statement P(1) is true.
(b) for n > 2, the truth of P(¢) for all £ < n implies the truth of P(n).

then P(n) is true for all positive integers n. ]
Discussion .

(1) Mathematical induction is an axiom satisfied by the set of positive integers Z.
Although it can not be deduced from a small set of axioms, we may understand the
rationale of it; it follows from (1) above, we know that P(1) is true. Furthermore, let
n = 2 in (2), we may conclude that P(2) is true. Then let n = 3 in (2), we conclude that
P(3) is true. Recursively, we conclude that P(n) is true for all n.’ |

We shall use Zorn’s lemma very often in Algebra. It is known that Zorn’s lemma is
equivalence to the aziom of choice and the well ordering principle. Although it is an
axiom of the set theory which can not be proved, it is important to understand Zorn’s
lemma. For this purpose, let us introduce the concepts of the partial ordering and the total
ordering. Sometime a total ordering is simply called an ordering.

Definition 1.5. Given a set T and a relation > on T. If the relation > satisfies the

following conditions, then it is called a partial ordering,
(a) ty >t forallt, € T.
(b) ty 2t andt; >tz = t, > 3.
(c) t, 21, andity > t) =>t; = t,. [ ]
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Definition 1.6. Given a set T and a partial ordering > on T. If > satisfies the following
condition (d), then > is called a total ordering,

(d) for any t,,t; € T, we always have either t, 2t orty; >t,.
|

Definition 1.7. Let T be a set, and > be a partial ordering on T. Let S be a subset of
T. If an element t € T satisfiest > s for all s € S, then the element t is said to be an
upper bound of S. If for a given element t € T, the relation ty >t implies t; = t, then the
element t is said to be a mazimal element of T. (]

Definition 1.8. Let T be a set, and > be a partial ordering on T. Let S be a subset of
T. If the restriction of > to S is a total ordering of S, then S is said to be a chain. [}

Now we may state Zorn’s lemma as follows,

Zorn’s lemma. Let T be a non-empty set and a partial ordering > on T. If every chain
of T has an upper bound, then there is a maximal element in T. [}

Discussion

(1) Since Zorn’s lemma is in fact an axiom for set theory, it can not be deduced from a
simpler system of axioms.

(2) Zorn’s lemma is a tool which helps us to simplify some proofs. Moreover, some
results can only be deduced from Zorn’s lemma. For instance, let us establish that in
any bounded domain D of the real plane, there is always a maximal open disc. We shall
use Zorn’s lemma. Let T be the set of all open discs in the domain D. Let the usual set
theoretic inclusion D be the partial ordering. Then it is easy to establish that (1) the set
T is non-empty. (2) let {D; : i € I} be a chain, then UiesD:i is obvious an open disc and
hence an element in T, thus an upper bound of the chain. It follows from Zorn’s lemma
that there is a maximal element in T which is what we want. (]

Exercises

(1) Let Q[x] be the set of all polynomials with rational coefficients. Prove that Q[x] is
a countable set.

(2) Given any set T. Prove that the set theoretic inclusion = is a partial ordering on
the set of all subsets of T.

(3) Prove that the usual ordering > is a partial ordering, and in fact a total ordering,
for the set of all integers Z.
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(4) Prove that the partial ordering in the above problem (2) satisfies the conditions of
Zorn’s lemma. Prove that the partial ordering in problem (3) does not satisfy the
conditions of Zorn’s lemma.

(5) Use the Mathematical induction to prove 12 +2? +--- + n? = (n(n+1)(2n+1)/3!).

(6) Let p: S — T be a map from the set S to the set T. Prove that p is injective if
and only if one of the following two conditions are satisfied;

(i) There exists a map 7 : T — S, such that 7p = the identity map on S.
(ii) For any set U, and any two maps 71,72 : U — S, the relation pmy = pmy
implies 11 = 72
(7) Let p: S — T be a map from the set S to the set T. Prove that p is surjective if
and only if one of the following two conditions are satisfied;
(i) There exists a map 7 : T — S, such that pr = the identity map on T.
(ii) For any set U, and any two maps 71,72 : T — U, the relation mp = m2p
implies 1y = 7

§2 Unique Factorization Theorem

The set of the natural numbers {1,2,3, - - - } will be called the set of the positive integers,
denoted by Z,. The set of the integers {--- ,—3,-2,-1,0,1,2,3,---} will be denoted by
Z

Mathematics originates from the natural numbers Z,. One way is to start with the
Peano’s azioms of the natural numbers and then introduce the four arithmetical operations,
+,—,+, x. We can prove the commutative laws, the associative laws and the distributive
laws thereafter in a logical manner. Using the natural numbers thus built, we may then
construct the set of rational numbers Q, the set of real numbers R and the set of complex
numbers C. For our readers, this logic method will be tedious and unnecessary. A portion of
the necessary ingredients of those logic arguments is attached in an appendix (cf Appendix
II Peano’s axioms). We will assume that the reader is familiar with the arithmetical
operations of Z,Q, R and C.

One of the most important operations in the theory of integers is the long division
algorithm. This operation had been known to many ancient civilizations. In modern
mathematics, it is known as the Euclidean algorithm?3. Let us introduce the following
concept, ’

Definition 1.9. Let a be a real number. Let [a] be the largest integer which is less then
or equal to a. [}

2Euclid: Greek Mathematician lived at Alexandria, Egypt 306 B.C..
3The term ‘algorithm’ is a corruption of Persian algebraist al-Khwarizmi, 9th century.
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Discussion

(1) The existence of [a] is intuitively obvious, while equiva.lence to one of the fundamental
properties of the real numbers, the Archimedean property*, which proclaims that for any
two real numbers n and d > 0, there exists a natural number g with ¢-d > n.

(2) For instance, [3.1] = 3, [-3.2] = —4 and [5] = 5. (]

Theorem 1.3. (Euclidean algorithm). Let d be a positive real number and n an
arbitrary real number. Then there must be an integer q and a real number r, such that

n=gq-d+r, 0<r<d
Proof: Let ¢ =[n/d], r =n — q-d. Then we have
g<nfd<qg+1

g-d<n<gq-d+d
0<n-g-d=r<d

Corollary 1. In the above theorem, the numbers q and r are uniquely determined by n
and d.

Proof:- Let ¢' and r' be another pair of real numbers with
n=gqg -d+r'(=q-d+r), 0<r'<d

Then we have
(g—-4q)-d=r"-r

We may assume that ¢ — ¢’ > 0. Then we get
0<(¢g—¢')-d=r'"-r<r' <d

Therefore we conclude

* Archimedes: Greek Mathematician and Scientist 287-212 B.C..
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Example 1. Using Euclidean algorithm, we may define the continuous fraction of any
real number. Let us take an example; From m = 3.1415926535897923846 - - -, we get

0.1415926535897923846 - - -
1
1
1
0.1415926535897923846 - - -
1
=a m’(_
0.1415926535807923846 - -
1
1
7+ §1415926535807923846 -
0.0088514278714473707 - --
1
1
7+ 15 0-00B8212355TB0B3T760-
0.0083514278714473707 ---
1

us
W—T=3+

=3+

-l

=3+

7
+ 1

0.008851427871447 - - -
0.000030192353364 - - -

15 +

= 3%
T+

1
R
292 + - -

15+
1

Let us discard the decimal parts and only keep the integer parts in the above, and call
the resulting rational numbers the partial continuous fractions. Then we get the partial
continuous fractions of m as follows,
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The above rational numbers are 3,22/7,333/106,355/113,103993/33102. The first approx-
imation, 3, was known to most ancient civilizations. The second approximation, 22/7, was
due to Archimedes (250 B.C.) and is still used in high schools today. The third one was not
very significant. The fourth one, 355/113 = 3.1415929203 - - -, was very close to the true
value of w, was discovered by Tsu Chhung-Chih (470 A.D.) in China and independently
by Vieta (1593 A.D.) in France.

It is generally known in number theory that the partial continuous fractions are the best
rational approximations with restrictions on the sizes of the denominators. ]

Another application of Euclidean algorithm is the unique factorization property of the
integers Z. For this purpose, let us introduce,

Definition 1.10. Let a,b,c be integers. If a = b- c. then we say that a is a multiple of
b and b is a divisor of a, in symbol, b | a. Ifb| a1,b | az,---,b | a,, then we say that
b is a common divisor of ay,as,--- ,a,. The greatest one among the common divisors of
a1, 0z, - ,an will be called the greatest common divisor, in symbol g.c.d., of ay,az, -+ ,an.
If ay | byaz | b,---an | b, then we say that b is a common multiple of ay,as,--- ,a,. The
smallest non-negative integer which is a common multiple of a,,a,,--- ,a, will be called
the least common multiple, in symbol €.c.m. of ay,ay,--- ,a,. (]

Theorem 1.4. Suppose that one of a;,a; is non-zero. Then the greatest common divisor
of ay,a, is the smallest positive integer in the set S={b, -a; + by -a; : b; € Z}. We will
use (a;,az) to denote the greatest common divisor of a,, a;.

Proof: Let the smallest positive integer be d = ¢;-a;+¢;-a;. Applying Euclidean algorithm
to the pair d, a;, there exist q; and r; with
ay=q -d+ry, 0<r<d
If r; # 0, then we get
n=a-qg-d=(l-c-q)a+(-cz-q1)e; €8

Note that then r; is a positive element in S which is less then d. A contradiction! We
conclude that r; = 0, i.e.,

d I a)
Similarly, we can prove

d|a;

Namely, d is a common divisor of @, and a,. Let d’ be another common divisor of a, as.
Then we have

d'lal, d'|a2=>d'|c1-a1+cz-ag=d

Since d is a positive integer, then we have d > d'. Therefore it follows from the definition
that d is the greatest common divisor of a;, a,. (]
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In the following we will establish the unique factorization theorem for Z, which is some-
times called the fundamental theorem of Arithmetics. For this purpose, we will introduce
the concepts of the irreducible numbers and the prime numbers. Note that in Z the only
invertible elements with respect to multiplication are 1,-1, i.e., if n and n~! are both
integers, then n must be 1 or —1.

Definition 1.11. Let a # 0,1,—1 be an integer. Then a is said to be an irreducible
number, if in any factorization of a = b- ¢, for some integers b and c, implies either b = 1
orc==+1. Iffor f,g€Z,a|f-g=>a| foralg, then a is called a prime number.

Lemma. In Z, a number a is an irreducible number if and only if it is a prime number.

Proof. (=) Let a be irreducible. We may assume that a is positive, otherwise replace it
by —a. Suppose that we have

alf'g’ f,gez

Suppose a is not a divisor of f. Since a is irreducible, i.e., the only positive divisors of
a are 1 and a, then the greatest common divisor of a and f must be 1. It follows from
Theorem 1.2. that

l=ci-at+c2-f

Multiplying by g on both sides of the above equation, we get

g=g-c-a+c;-(f-9)

Therefore we have a | g and a is a prime number.

(<=) Let a be a prime number and a = b - c. Then we have a | b- ¢ which implies a | b
ora|c, sayal|bb=a-d. Trivially, we have a = a-(c-d) and 1 = c- d. Therefore c is
multiplicatively invertible and must be 1 or —1. We conclude that a is irreducible. |

Discussion

(1) For the general rings (cf Chapter III), the concepts of irreducible elements and
prime elements are different. The coincidence of these two concepts establishes the Unique
Factorization Theorem (see below).

(2) An expression a = []; pi with all p; prime numbers will be called a prime decompo-
sition of a. (]

Theorem 1.5. (Unique Factorization Theorem). Let a > 1 be any positive integer.
Then a has a prime decomposition a = []; pi. Moreover, all prime decompositions of a are
identical up to a reordering of p;.

Proof: We shall prove the existence and then the uniqueness of the prime decomposition.
The present theorem is void for a = 1. Let us start with a = 2. Since 2 is a prime number,
then the equation 2 = 2 is a prime decomposition of 2. Let any positive integer a > 2 be
given. Using Mathematical induction, we assume that any positive integer less than a has



