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About This Book

If you want to learn the most fundamental things about plasma astrophysics
with the least amount of time — and who doesn’t? — this text is for you. This
book is addressed to young people, mainly to students, without a background
in plasma physics; it grew from the lectures given many times in the Faculty of
General and Applied Physics at the Moscow Institute of Physics and Technics
(the well known ‘fiz-tekh’) since 1977. A similar full-year course was also
offered to the students of the Astronomical Division of the Faculty of Physics
at the Moscow State University over the years after 1990. A considerable
amount of new material, related to modern astrophysics, has been added to
the lectures. So the contents of the book can hardly be presented during a
one-year lecture course, without additional seminars.

In fact, just the seminars with the topics ‘how to make a cake’ were
especially pleasant for the author and useful for students. In part, the text
of the book retains the imprint of the seminar form, implying a more lively
dialogue with the reader and more visual representation of individual notions
and statements. At the same time, the author’s desire was that these digres-
sions from the academic language of the monograph will not harm the rigour
of presentation of this textbook’s subject — the physical and mathematical
introduction to plasma astrophysics.

There is no unique simple model of a plasma, which encompasses all situ-
ations in space. We have to familiarize ourselves with many different models
applied to different situations. We need clear guidelines when a model works
and when it does not work. Hence the best strategy is to develop an intu-
ition about plasma physics, but how to develop it?

The idea of the book is not typical for the majority of textbooks on plasma
astrophysics. Its idea is

the consecutive consideration of physical principles, starting from
the most general ones, and of simplifying assumptions which give
us a simpler description of plasma under cosmic conditions.

Thus I would recommend the students to read the book straight through
each chapter to see the central line of the plasma astrophysics, its classic
fundamentals. In so doing, the boundaries of the domain of applicability
of the approximation at hand will be outlined from the viewpoint of physics
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rather than of many possible astronomical applications. After that, as an aid
to detailed understanding, please return with pencil and paper to work out
the missing steps (if any) in the formal mathematics.

On the basis of such an approach the student interested in modern astro-
physics, its current practice, will find the answers to two key questions:

(1) what approximation is the best one (the simplest but sufficient) for
description of a phenomenon in astrophysical plasma;

(2) how to build an adequate model for the phenomenon, for example, a
solar flare or a flare in the corona of an accretion disk.

Practice is really important for the theory of astrophysical plasma. Related
exercises (problems and answers supplemented to each chapter) to improve
skill do not thwart the theory but serve to better understanding of plasma
astrophysics.

As for the applications, preference evidently is given to physical processes
in the solar plasma. Why? — Much attention to solar plasma physics is con-
ditioned by the possibility of the all-round observational test of theoretical
models. This statement primarily relates to the processes in the solar atmo-
sphere. For instance, flares on the Sun, in contrast to those on other stars as
well as a lot of other analogous phenomena in the Universe, can be seen in
their development, i.e. we can obtain a sequence of images during the flare’s
evolution, not only in the optical and radio ranges but also in the ultraviolet,
soft and hard X-ray, gamma-ray ranges.

This book is mainly intended for students who have mastered a course of
general physics and have some initial knowledge of theoretical physics. For
beginning students, who may not know in which subfields of astrophysics they
wish to specialize, -

it is better to cover a lot of fundamental theories thoroughly than
to dig deeply into any particular astrophysical subject or object,

even a very interesting one, for example black holes. Astronomers and astro-
physicists of the future will need tools that allow them to explore in many
different directions. Moreover astronomy of the future will be, more than
hitherto, precise science similar to mathematics and physics.

The beginning graduate students are usually confronted with a confusing
amount of work on plasma astrophysics published in a widely dispersed scien-
tific literature. Knowing this difficulty, the author has tried as far as possible
to represent the material in a self-contained form which does not require the
reading of additional literature. However there is an extensive bibliography in
the end of the book, allowing one to find the original works. In many cases,
particularly where a paper in Russian is involved, the author has aimed to
give the full bibliographic description of the work, including its title, etc.

Furthermore the book contains recommendations as to an introductory
(unavoidable) reading needed to refresh the memory about a particular fact,
as well as to additional (further) reading to refine one’s understanding of the
subject. Separate remarks of an historical character are included in many



About This Book XV

places. It is sometimes simpler to explain the interrelation of discoveries by
representing the subject in its development. It is the author’s opinion that
the outstanding discoveries in plasma astrophysics are by no means governed
by chance. With the same thought in mind, the author gives preference to
original papers on a topic under consideration; it happens in science, as in
art, that an original is better than nice-looking modernizations. Anyway,

knowledge of the history of science and especially of natural science
is of great significance for its understanding and development.

The majority of the book’s chapters begin from an ‘elementary account’
and illustrative simple examples but finish with the most modern results of
scientific importance. New problems determine the most interesting perspec-
tives of plasma astrophysics as a new developing science. The author hopes,
in this context, that professionals in the field of plasma astrophysics and ad-
jacent sciences will enjoy reading this book too. Open issues are the focus of
our attention in many places where they are. In this way, perspectives of
the plasma astrophysics with its many applications will be also of interest
for readers. The book can be used as a textbook but has higher potential of
modern scientific monograph.

The first volume of the book is unique in covering the basic principles
and main practical tools required for understanding and work in plasma as-
trophysics. The second volume "Plasma Astrophysics. 2. Reconnection and
Flares” (referred in the text as vol. 2) represents the basic physics of the
magnetic reconnection phenomenon and the flares of electromagnetic origin
in space plasmas in the solar system, relativistic objects, accretion disks, their
coronae.
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