[Javati b1 &

et AES)=]
Ja \'/ a /i‘ﬁﬂﬁ A

Data Structures & Algorithm
Analysis 1n Java™

(3£) Mark Allen Weiss Zg3%

g EERE
WWW., 501encep com

Java 12)7 51 45 &

Java BB G EEH 0
CHENR)

Data Structures & Algorithm Analysis In Java
First Edition

(F) Mark Allen Weiss 2w

H &2 & B a

b ut

E=: 01-2003-7653 &

moEE N

AP RV T WS B R, B MERR . BAA. BEL IG 7S K SRR T 1 1 35 03T E RN
T, EI TR Java .
AT 2 u’MJ"’L’f* FOIr W, TR ST SR S B 45,

English reprint copyright © 2003 by Science Press and Pearson Education Asia Limited.

Original English language title: Data Structures and Algorithim Analysis In Java ,1* Edition by Weiss
Mark Allen. Copyright © 1999.

ISBN 0-201-35754-2

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Addison-Wesley Publishing Longman Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).

B e ALGAC RN CANV SR D IR s B 1R S ORI [£ 2 O 945 AT

AP ENRIAT Pearson Education CST/E#UFT IR ALHD BOCHI TS % Ak ¢ ASEHRTY

B4 75 i 4 B (CIP) 3R

Java B 4 # Li 511k 50 Mr=Data Structures and Algorithm in Java/ (J:) Mark Allen Weiss('}
i AR e Wi E A —dbat: FEEINREE, 2004

ISBN 7-03-012498-7

o ML HLMlava T —FUE 80— S0 B LA — 28 05 r i — 0t 3
IV.(UTP312 @TP311.12

R RRCAS 1 HAT CIP B iy (2003) 3% 103029 %

RRlAiE: B / TiE%E: THE
TAREPHl BARK / HEPME: EAFALF@LTE

% 2 k& IR
bk SimARAL I 165
HEUX i15:100717
http:// www. sciencep.com

PR R VAT
Bl et Aty LR e

*
2004 11 - W A 787>960 1/16
2004 451 5N Fligk: 35
e 1—3 000 78 800 000
Efr: 56.00 7T

Can Ay B IR Y IRLRE, 3%+ 055 8 4% R AR)

FEEIE

BB T OB E 20 RIBEME 2T AR TRAE 2. Java B
AT HASOME 221, Fet EERIF B E R 2408, Java BFHH LR
BHRERLM CHEFN—ERZE D, WA Java 5JLAF S RGN, £
%R, R, BEE . e, Java NEAFIRAE, B2 ZMNATILFEIrEER
RUFREAOE . THART Web HRGEF KF, Java HARBRFHMAFHEE . K Java
i i ANEBHEIE , Java MATS—H@WBIES Ok MERB AN THFTREEMIET,
Internet BIREF BT Oak BYEA M Java M K MTT. BTE, J2EE AR E LR Ik 2
Web Ml R IR 6 -

FHIBRFHARARMUNERBRAFOHBETE, EFEEEAFHRBEE, M
FH B X RBMEBEARBAENLERE, AMIAHEEMBE TR REEPITZH R .
B —EERE XA, B xR AR L Gamma Helm ,Johnson F Vlissides
BEMZBBE GHER) hFE, xR 7 MR F B xR 8
R EENE. FifSHRIFOERRRGZERAS T KBARIHER, 5
PN IR B SR BRI FUK T B X EE M.

AMNBWCET 5 Java FRERH M Java IZiHERAXCHZHMBEE, BT HH Java
F R RFEHRIELR DS MRS, 4

Qlava i8R) RAF E MR ENSE XA, LOTILE Java BIF 6, 44
#87 Gamma. Helm. Johnson il Vlissides 5 EMZRPE (IHEX) $IBHIA
23 A, SEid A, Java BB AT ARG T MERITHENNAE, HFESSBPRN
A AR G E ZemfEet: A Java BBI7

(Java RN AN BT HTFEANF LTS, JA THA Java FFREFREF BRI
s . B R BOTER, RS HIR EEEA—EI R o
SRR AR T AR . X BB RGEM L Bh# FRY J2EE | ISP,
EIB #1 AP $HARETHE, BEEE —EREERN Java BFRFEESH .

()2EE BLHER) £ Sun Java Center IR HIRIHITAY J2EE R ELRAEKM DL,
ZH FEHA J2EE X8R (Java Server Pages, Java Servlet, Enterprise Java Beans,
Java Message Services %) MM, BAESLER . RITRBAMELBIEMBRITRE. &H
ANERT J2EE f3E 15 MR AR AR, UG BB, T EER A
ZHBNEES I2EE MEIFE . BFER ., &iHH, FREMBAEEE., —aE, %

il

i Java 4B LM 5 H ok AT (HEPMR)

EE TR, WEMIFR 12EE L& FRTE A

XML ZH— R MbRE, Web 1. B8, RS%%, HuT LA XML U &ER .,
R L AR B IEAES Java SRALFE XML XA, <A Java 4638 XML) F41i6R T
anfel{gi A Java RS XML U %452 B i B MR £ /) Java 4B XML £ AR M43,
&N BIT 1000 THETF SAX, DOM, JDOM, JAXP, TrAX, XPath, XSLT, SOAP £
PH#, ZPIE S T Java 25 XML CHHY) Java 7 51 . HNBNERESBIR RN
LA, RFilEE&1E N FMEan 2%,

7 (LR Java) H, 1ER RTSI ERKAKIM I Z—, Dibble M Java F EHEA MSLaT
()RR 8R, KK T RTST &9 BRI R T . W ZRSEat R 240
FmFERRR, XBEE THWEANEHNBFIRN—AR, HEEANRFEHRE: 54K
MBI EERVEY: . SR IFR PRSI JVM S RISERT R, BRIWEE . ToERR
Vilal, MENER KT WL RTCHRR NFERE BRI 4 BL; R . BRI
FE AR BT A, RbEmahl . S0 LRSS, XR—AIENEH
KR, BRTAEZEN Java FEFRAR.

(Java BB 5B EM) NE T ¥ WAOBIREH, EER. #HR. B3I, R
MR, FERTE IR ANHE R AT T BT, A THINAY Java SEHL. X PBRE™
i, FKaH, TRERFRSESR,

M, XEREANET Java WAKIFSEENE: MEFEHEMER Java RS
MR . Java iR, Java BN . J2EE .05, B H 35 BEH Java FFEKRNL
R4S, (Java 4078 XML SCR4 A Java SERFRGEFF R) - HNARGE—EMEREE, B
HEENLRSEMNE. ‘

HETF M, 506 Java REF Z AN AP AREEMREREXES, MiE8NA
A O HIBES SRR 2B AT E UK o

AERFEFERFRERMAFEIEL Kk #E
FHEEAL: Java ARG, @@ MRt Ak

Preface

Purpose/Goals

This new Java edition describes data structures, methods of organizing large amounts of
data, and algorithm analysis, the estimation of the running time of algorithms. As computers
become faster and faster, the need for programs that can handle large amounts of input
becomes more acute. Paradoxically, this requires more careful attention to efficiency, since
inefficiencies in programs become most obvious when input sizes are large. By analyzing
an algorithm before it is actually coded, students can decide if a particular solution will be
feasible. For example, in this text students look at specific problems and see how careful
implementations can reduce the time constraint for large amounts of data from 16 years
to less than a second. Therefore, no algorithm or data structure is presented without an
explanation of its running time. In some cases, minute details that affect the running time
of the implementation are explored.

Once a solution method is determined, a program must still be written. As computers
have become more powerful, the problems they must solve have become larger and more
complex, requiring development of more intricate programs. The goal of this text is to teach
students good programming and algorithm analysis skills simultaneously so that they can
develop such programs with the maximum amount of efficiency.

This book is suitable for either an advanced data structures (CS7) course or a first-year
graduate course in algorithm analysis. Students should have some knowledge of intermedi-
ate programming, including such topics as object-based programming and recursion, and
some background in discrete math.

Approach

Although the material in this text is largely language independent, programming requires
the use of a specific language. As the title implies, we have chosen Java for this book.
Java is a relatively new language that is often examined in comparison with C++.
Java offers many benefits, and programmers often view java as a safer, more portable, and
easier-to-use language than C++. As such, it makes a fine core language for discussing and
implementing fundamental data structures. Other important parts of java, such as threads
and its GUI, although important, are not needed in this text and thus are not discussed.
As with every programming Janguage, Java has some disadvantages. It does not directly
support genetic programming; a workaround is required that is discussed in Chapter 1. VO ili

—— pyi

PREFACE

support using Java is minimal, but there are now many /O classes available on the Internet
that make things simpler. In any event, the examples in the text make minimal use of the
Java /O facilities.

Java’s advantage—that it simplifies C++s (sometimes confusing) syntax—is also a li-
ability. Programmers who eventually code in C++ will find hidden traps in what should
be a straightforward conversion of java code to C++ code. To help alleviate this problem,
the accompanying website contains 2 chapter that describes C++ and illustrates many of
C++s subtleties and nuances that would not be obvious to many.

Complete versions of the data structures, in both Java and C++, are available on the In-
ternet. We use similar coding conventions to make the parallels between the two languages
more evident.

Overview

Chapter 1 contains review material-on discrete math and recursion. 1 believe the only way
to be comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 5. Chapter 1 also
presents material that serves as a review of basic Java. Included is a discussion of the java
workaround needed for generic algorithms and data structures.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic analysis and
its major weaknesses. Many examples are provided, including an in-depth explanation of
logarithmic running time. Simple recursive programs are analyzed by intuitively convert-
ing them into iterative programs. More complicated divide-and-conquer programs are in-
troduced, but some of the analysis (solving recurrence relations) is implicitly delayed until
Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding these data
structures using aprs, fast implementation of these data structures, and an exposition of
some of their uses. There are almost no complete programs, but the exercises contain plenty
of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external search
trees (B-trees). The uNix file system and expression trees are used as examples. avL trees and
splay trees are introduced. More careful treatment of search tree implementation details is
found in Chapter 12. Additional coverage of trees, such as file compression and game trees,
is deferred until Chapter 10. Data structures for an external medium are considered as the
final topic in several chapters.

Chapter 5 is a relatively short chapter concerning hash tables. Some analysis is per-
formed. and extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is additional
material on some of the theoretically interesting implementations of priority queues. The
Fibonacci heap is discussed in Chapter 11, and the pairing heap is discussed in Chap-
ter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and analysis.
All the important general-purpose sorting algorithms are covered and compared. Four al-
gorithms are analyzed in detail: insertion sort, Shellsort, heapsort, and quicksort. External
sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time. This is
a short and specific chapter that can be skipped if Kruskals algorithm is not discussed.

PrEFACE

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not only
because they frequently occur in practice but also because their running time is so heavily
dependent on the proper use of data structures. Virtually all of the standard algorithms
are presented along with appropriate data structures, pseudocode, and analysis of running
" time. To place these problems in a proper context, a short discussion on complexity theory
(including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving tech-
niques. This chapter is heavily fortified with examples. Pseudocode is used in these later
chapters so that the students appreciation of an example algorithm is not obscured by im-
plementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters 4 and
6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the k-d tree, and the pairing heap. This
chapter departs from the rest of the text by providing complete and careful implementations
for the search trees and pairing heap. The material is structured so that the instructor can
integrate sections into discussions from other chaptets. For example, the top-down red-
black tree in Chapter 12 can be discussed along with avi trees (in Chapter 4).

Appendix A lists some commonly used Java classes. Appendix B discusses the Java
Collections package. This standard package (as of Java 1.2) contains implementations of
several data structures discussed in the text.

Chapters 1-9 provide enough material for most one-semester data structures courses.
If time permits, then Chapter 10 can be covered. A graduate course on algorithm analysis
could cover Chapters 7—11. The advanced data structures analyzed in Chapter 11 can easily
be referred to in the earlier chapters. The discussion of NP-completeness in Chapter 9 is far
too brief to be used in such a course. Garey and Johnson’s book on NP-completeness can
be used to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material is pre-
sented. The last exercises may address the chapter as a whole rather than a specific section.
Difficult exercises are marked with an asterisk, and more challenging exercises have two
asterisks.

A solutions manual containing solutions to almost all the exercises is available (o in-
structors from the Addison Wesley Longman Publishing Company.

References

References are placed at the end of each chapter. Generally the references either are histor-
ical, representing the original source of the material, or they represent extensions and im-
provements to the results given in the text. Some references represent solutions to exercises.

Code Availability

The example program code in this book is available via anonymous ftp at aw.com. 1t is also
accessible through the World Wide Web; the URL is http://www.aw] .com/cseng/ (follow
the links from there). The exact location of this material may change.

PREFACE

Acknowledgments

Many, many people have helped me in the preparation of books in this series. Some are
listed in other versions of the book; thanks to all.

As usual, the writing process was made easier by the professionals at Addison Wesley
Longman. I'd like to thank my editor, Susan Hartman; associate editor, Katherine Harutu-
nian; and production editor, Pat Unubun. I'd also like to thank Kris Engberg and her staff
at Publication Services for their usual fine work putting the final pieces together.

1 would like to thank the reviewers, who provided valuable comments, many of which
have been incorporated into the text. For this edition, they are Chris Brown (University
of Rochester), Thang N. Bui (Pennsylvania State University at Harrisburg), G. H. Hedrick
(Oklahoma State University), Sampath Kannan (University of Pennsylvania), and Gurdip
Singh (Kansas State University).

Finally, I'd like to thank the numerous readers who have sent e-mail messages and
pointed out errors or inconsistencies in earlier versions. My World Wide Web page
http://www.cs.Fiu.edu/~weiss will contain updated source code (in Java, C, and C++),
an errata list, and a link to submit bug reports.

M.AW.

Contents

Chapter 1 Introduction 1

1.1
1.2

1.3.
1.4.

L5.
1.6.

1.7.

What's the Book Abour? 1
Mathematics Review 2

1.2.1. Exponents 2

1.2.2. Logarithms 3

1.2.3. Series 3

1.2.4. Modular Arithmetic 5

1.2.5. The P Word 5

A Brief Introduction to Recursion * 7
Generic Objects in Java 11

1.4.1. The IntCel Class 11

1.4.2. The MemoryCell Class 13
1.4.3. Implementing Generic findMax 15
Exceptions 16

Input and Output 19

1.6.1. Basic Stream Operations 19
1.6.2. The StringTokenizer Object 20
1.6.3. Sequential Files 20

Code Organization 24

1.7.1. Packages 24

1.7.2. The MyInteger Class 24

1.7.3. Efficiency Considerations 24
Summary 25

vili CONTENTS

Exercises 25

References 27

Chapter 2 Algorithm Analysis 29
2.1. Mathematical Background 29
2.2. Model 32
2.3. What to Analyze 32
2.4. Running Time Calculations 35 i
2.4.1. A Simple Example 35
2.4.2. General Rules 35

2.4.3. Solutions for the Maximum Subsequence
Sum Problem 37

2.4.4. Logarithms in the Running Time 43
2.4.5. Checking Your Analysis 47

2.4.6. A Grain of Salt 48

Summary 48

Exercises 49

References 54

Chapter 3 Lists, Stacks, and Queues 55
3.1. Abstract Data Types (ADTs) 55
3.2. The List ADT 56
3.2.1. Simple Array Implementation of Lists 56
3.2.2. Linked Lists 57
3.2.3. Programming Details 58
3.2.4. Doubly Linked Lists 63
3.2.5. Circular Linked Lists 63
3.2.6. Examples 64
3.2.7. Cursor Implementation of Linked Lists 69
3.3. The Stack ADT 75
3.3.1. Stack Model 75
3.3.2. implementation of Stacks 76

3.4.

3.3.3. Applications 81

The Queue ADT 88

3.4.1. Queue Model 88

3.4.2. Array Implementation of Queues
3.4.3. Applications of Queues 92
Summary 94

Exercises 94

Chapter 4 Trees 99

4.1.

4.2.

4.3.

44.

4.5.

4.6.
4.7.

Preliminaries 99

4.1.1. Implementation of Trees 100
4.1.2. Tree Traversals with an Application
Binary Trees 105

4.2.1. Implementation 105

CONTENTS

89

101

4.2.2. An Example: Expression Trees 106

The Search Tree ADT—Binary Search Trees
4.3.1. find 110

4.3.2. findMin and findMax 111

4.3.3. insert 112

4.3.4. remove 113

4.3.5. Average-Case Analysis 116

AVL Trees 118

4.4.1. Single Rotation 120

4.4.2. Double Rotation 123

Splay Trees 130

4.5.1. A Simple Idea (That Does Not Work)
4.5.2. Splaying 132

Tree Traversals (Revisited) 138
B-Trees 139

Summary 144

Exercises 145

References 152

109

130

CONTENTS

Chapter 5 Hashing 155

5.1. General Idea 155

5.2. Hash Function 156

5.3. Separate Chaining 158

5.4. Open Addressing 162
5.4.1. Linear Probing 162
5.4.2. Quadratic Probing 164
5.4.3. Double Hashing 170

5.5. Rehashing 171

5.6. Extendible Hashing 174
Summary 176
Exercises 178
References 181

Chapter 6 Priority Queues (Heaps) 183
6.1. Model 183
6.2. Simple Implementations 184
6.3. Binary Heap 184
6.3.1. Structure Property 185
6.3.2. Heap Order Property 186
6.3.3. Basic Heap Operations 188
6.3.4. Other Heap Operations 192
6.4. Applications of Priority Queues 195
6.4.1. The Selection Problem 195
6.4.2. Event Simulation 196
6.5. d-Heaps 198
6.6. Leftist Heaps 198
6.6.1. Leftist Heap Property 199
6.6.2. Leftist Heap Operations 200
6.7. Skew Heaps 206
6.8. Binomial Queues 208
6.8.1. Binomial Queue Structure 208

6.8.2. Binomial Queue bperations 208
*6.8.3. Implementation of Binomial Queues 213
Summary 215
Exercises 218
References 222

Chapter 7 Sorting 225
7.1. Preliminaries 225
7.2. Insertion Sort 226
7.2.1. The Algorithm 226
7.2.2. Analysis of Insertion Sort 226
7.3. A Lower Bound for Simple Sorting Algorithms 227
7.4. Shellsort 228
7.4.1. Worst-Case Analysis of Shellsort 229
7.5. Heapsort 232
7.5.1. Analysis of Heapsort 232
7.6. Mergesort 235
7.6.1. Analysis of Mergesort 237
7.7. Quicksort 240
7.7.1. Picking the Pivot 241
7.7.2. Partitioning Strategy 243
7.7.3. Small Arrays 245
7.7.4. Actual Quicksort Routines 245
7.7.5. Analysis of Quicksort 246
7.7.6. A Linear-Expected-Time Algorithm for Selection 250
7.8. A General Lower Bound for Sorting 252
7.8.1. Decision Trees 252
7.9. Bucket Sort 254
7.10. External Sorting 255
7.10.1. Why We Need New Algorithms 255
7.10.2. Model for External Sorting 255
7.10.3. The Simple Algorithm 255

e e

xil CONTENTS

7.10.4. Multiway Merge 257

7.10.5. Polyphase Merge 258

7.10.6. Replacement Selection 259

Summary 260 ' ‘
Exercises 261

References 265

Chapter 8 The Disjoint Set ADT 269
8.1. Equivalence Relations 269
8.2. The Dynamic Equivalence Problem 270
8.3. Basic Data Structure 271
8.4. Smart Union Algorithms 274
8.5. Path Compression 276
8.6. Worst Case for Union-by-Rank and Path Compression 279
8.6.1. Analysis of the Union/Find Algorithm 279
8.7. An Application 285
Summary 287
Exercises 287
References 289

Chapter 9 Graph Algorithms 291
9.1. Definitions 291
9.1.1. Representation of Graphs 292
9.2. Topological Sort 294
9.3. Shortest-Path Algorithms 297
9.3.1. Unweighted Shortest Paths 299
9.3.2. Dijkstra’s Algorithm 304
9.3.3. Graphs with Negative Edge Costs 310
9.3.4. Acyclic Graphs 311
9.3.5. All-Pairs Shortest Path 314
9.4. Network Flow Problems 314
9.4.1. A Simple Maximum-Flow Algorithm 315

CONTENTS il

9.5. Minimum Spanning Tree 319
9.5.1. Prim’s Algorithm 320
9.5.2. Kruskal’s Algorithm 323
9.6. Applications of Depth-First Search 325
9,6.1. Undirected Graphs 326
9.6.2. Biconnectivity 327
9.6.3. Euler Circuits 331
9.6.4. Directed Graphs 334
9.6.5. Finding Strong Components 336
9.7. Introduction to NP-Completeness 337
9.7.1. Easy vs. Hard 338
9.7.2. The Class NP 339
9.7.3. NP-Complete Problems 339
Summary 341
Exercises 341
References 349

Chapter 10 Algorithm Design Techniques 353
10.1. Greedy Algorithms 353
10.1.1. A Simple Scheduling Problem 354
10.1.2. Huffman Codes 357
10.1.3. Approximate Bin Packing 362
10.2. Divide and Conquer 370

10.2.1. Running Time of Divide
and Conquer Algorithms 371

10.2.2. Closest-Points Problem 373
10.2.3. The Selection Problem 377

10.2.4. Theoretical Improvements
for Arithmetic Problems 380

10.3. Dynamic Programming 384
10.3.1. Using a Table Instead of Recursion 384
10.3.2. Ordering Matrix Multiplications 387

xiv CoNTENTS

10.3.3. Optimal Binary Search Tree 389
10.3.4. All-Pairs Shortest Path 393

10.4. Randomized Algorithms 395
10.4.1. Random Number Generators 396
10.4.2. Skip Lists 399
10.4.3. Primality Testing 402

10.5. Backtracking Algorithms 403
10.5.1. The Turnpike Reconstruction Problem 405 |
10.5.2. Games 409
Summary 415

Exercises 415
References 423

Chapter 11 Amortized Analysis 429

11.1. An Unrelated Puzzle 430

11.2. Binomial Queues 430

11.3. Skew Heaps 435

11.4. Fibonacci Heaps 437
11.4.1. Cutting Nodes in Leftist Heaps 438
11.4.2. Lazy Merging for Binomial Queues 440
11.4.3. The Fibonacci Heap Operations 443
11.4.4. Proof of the Time Bound 443

11.5. Splay Trees 446
Summary 449
Exercises 450
References 452

Chapter 12 Advanced Data Structures
and Implementation 453

12.1. Top-Down Splay Trees 453
12.2. Red-Black Trees 460
12.2.1. Bottom-Up Insertion 461

