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Preface

Purpose/Goals

This new Java edition describes data structures, methods of organizing large amounts of
data, and algorithm analysis, the estimation of the running time of algorithms. As computers
become faster and faster, the need for programs that can handle large amounts of input
becomes more acute. Paradoxically, this requires more careful attention to efficiency, since
inefficiencies in programs become most obvious when input sizes are large. By analyzing
an algorithm before it is actually coded, students can decide if a particular solution will be
feasible. For example, in this text students look at specific problems and see how careful
implementations can reduce the time constraint for large amounts of data from 16 years
to less than a second. Therefore, no algorithm or data structure is presented without an
explanation of its running time. In some cases, minute details that affect the running time
of the implementation are explored.

Once a solution method is determined, a program must still be written. As computers
have become more powerful, the problems they must solve have become larger and more
complex, requiring development of more intricate programs. The goal of this text is to teach
students good programming and algorithm analysis skills simultaneously so that they can
develop such programs with the maximum amount of efficiency.

This book is suitable for either an advanced data structures (CS7) course or a first-year
graduate course in algorithm analysis. Students should have some knowledge of intermedi-
ate programming, including such topics as object-based programming and recursion, and
some background in discrete math.

Approach

Although the material in this text is largely language independent, programming requires
the use of a specific language. As the title implies, we have chosen Java for this book.
Java is a relatively new language that is often examined in comparison with C++.
Java offers many benefits, and programmers often view java as a safer, more portable, and
easier-to-use language than C++. As such, it makes a fine core language for discussing and
implementing fundamental data structures. Other important parts of java, such as threads
and its GUI, although important, are not needed in this text and thus are not discussed.
As with every programming Janguage, Java has some disadvantages. It does not directly
support genetic programming; a workaround is required that is discussed in Chapter 1. VO ili
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support using Java is minimal, but there are now many /O classes available on the Internet
that make things simpler. In any event, the examples in the text make minimal use of the
Java /O facilities.

Java’s advantage—that it simplifies C++s (sometimes confusing) syntax—is also a li-
ability. Programmers who eventually code in C++ will find hidden traps in what should
be a straightforward conversion of java code to C++ code. To help alleviate this problem,
the accompanying website contains 2 chapter that describes C++ and illustrates many of
C++s subtleties and nuances that would not be obvious to many.

Complete versions of the data structures, in both Java and C++, are available on the In-
ternet. We use similar coding conventions to make the parallels between the two languages
more evident.

Overview

Chapter 1 contains review material-on discrete math and recursion. 1 believe the only way
to be comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 5. Chapter 1 also
presents material that serves as a review of basic Java. Included is a discussion of the java
workaround needed for generic algorithms and data structures.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic analysis and
its major weaknesses. Many examples are provided, including an in-depth explanation of
logarithmic running time. Simple recursive programs are analyzed by intuitively convert-
ing them into iterative programs. More complicated divide-and-conquer programs are in-
troduced, but some of the analysis (solving recurrence relations) is implicitly delayed until
Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding these data
structures using aprs, fast implementation of these data structures, and an exposition of
some of their uses. There are almost no complete programs, but the exercises contain plenty
of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external search
trees (B-trees). The uNix file system and expression trees are used as examples. avL trees and
splay trees are introduced. More careful treatment of search tree implementation details is
found in Chapter 12. Additional coverage of trees, such as file compression and game trees,
is deferred until Chapter 10. Data structures for an external medium are considered as the
final topic in several chapters.

Chapter 5 is a relatively short chapter concerning hash tables. Some analysis is per-
formed. and extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is additional
material on some of the theoretically interesting implementations of priority queues. The
Fibonacci heap is discussed in Chapter 11, and the pairing heap is discussed in Chap-
ter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and analysis.
All the important general-purpose sorting algorithms are covered and compared. Four al-
gorithms are analyzed in detail: insertion sort, Shellsort, heapsort, and quicksort. External
sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time. This is
a short and specific chapter that can be skipped if Kruskals algorithm is not discussed.
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Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not only
because they frequently occur in practice but also because their running time is so heavily
dependent on the proper use of data structures. Virtually all of the standard algorithms
are presented along with appropriate data structures, pseudocode, and analysis of running
" time. To place these problems in a proper context, a short discussion on complexity theory
(including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving tech-
niques. This chapter is heavily fortified with examples. Pseudocode is used in these later
chapters so that the students appreciation of an example algorithm is not obscured by im-
plementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters 4 and
6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the k-d tree, and the pairing heap. This
chapter departs from the rest of the text by providing complete and careful implementations
for the search trees and pairing heap. The material is structured so that the instructor can
integrate sections into discussions from other chaptets. For example, the top-down red-
black tree in Chapter 12 can be discussed along with avi trees (in Chapter 4).

Appendix A lists some commonly used Java classes. Appendix B discusses the Java
Collections package. This standard package (as of Java 1.2) contains implementations of
several data structures discussed in the text.

Chapters 1-9 provide enough material for most one-semester data structures courses.
If time permits, then Chapter 10 can be covered. A graduate course on algorithm analysis
could cover Chapters 7—11. The advanced data structures analyzed in Chapter 11 can easily
be referred to in the earlier chapters. The discussion of NP-completeness in Chapter 9 is far
too brief to be used in such a course. Garey and Johnson’s book on NP-completeness can
be used to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material is pre-
sented. The last exercises may address the chapter as a whole rather than a specific section.
Difficult exercises are marked with an asterisk, and more challenging exercises have two
asterisks.

A solutions manual containing solutions to almost all the exercises is available (o in-
structors from the Addison Wesley Longman Publishing Company.

References

References are placed at the end of each chapter. Generally the references either are histor-
ical, representing the original source of the material, or they represent extensions and im-
provements to the results given in the text. Some references represent solutions to exercises.

Code Availability

The example program code in this book is available via anonymous ftp at aw.com. 1t is also
accessible through the World Wide Web; the URL is http://www.aw] .com/cseng/ (follow
the links from there). The exact location of this material may change.
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