Practical Methods
of
Optimization

Volume 2
Constrained Optimization

R. Fletcher

Department of Mathematic s
Unwversuty of Dundee, Scotland, U K

A Wiley-Interscience Publication

JOHN MILEY & SONS

Chichester - NeWw Yd¥R !4~Hridbank - Toronto

Copyright © 1981, by John Wiley & Sons, Ltd.

All rights reserved,

Nao part ot this book may be reproduced by any means, nor
transmitted. nor translated into a machine language without the
written permission of the publisher,

British Library Cataloguing in Publicarion Datc.

Fletcher. R.
Practical methods of optimization.
Vol. 2: Constrained optimization
I. Mathematical optimization
[Title
S15 QA4S 80-42063

ISBN 0471 278289

Typeset by Pretace Ltd, Salishury. Wilts, and printed in the
United States of America,

Contents

Preface .

Errata to Volume 1 .

Chapter 7 Introduction .

7.1
7.2

Preview . .
Elimination and Other Transformdtlons .

Questions for Chapter 7

Chapter 8 Linear Programmir{g

8.1
8.2
. 83
8.4
8.5
8.6

Structure .

The Simplex Me thod

Other LP Techniques .
Feasible Points for Linear Constramts

Stable and Large-scale Linear Programming .
Degeneracy

Questions for Chapter 8

Chapter 9 The Theory of Constrained Optimization

9.1
9.2
9.3
9.4
9.5

Lagrange Multipliers

First Order Conditions .
Second Order Conditions .
Convexity .

Duality .

A

Questions for Chapter 9

Chapter 10 Quadratic Programming .

10.1
10.2
10.3
10.4
10.5
10.6

Equality Constraints .
Lagrangian Methods
The Active Set Method
Advanced Features
Special QP Problems .

Complementary Pivoting and ()ther Methuds .

Questions for Chapter 10 .

vil

< O = ==

11

13
19
22

-
~

34
39

46
46
52
58
63
69
74

79
79
86
88
92
()5
97

. 101

vi

Chapter 11

i1.1
11.2
11.3

Equality Constraints .
Inequality Constraints
Zigzagging

Questions for Chapter 11 .

Chapter 12 Nonlinear Programming

12.1
12.2
12.3

12,5

Penalty and Barrier Functions .
Muttiplier Penalty Functions

The Lagrange—Newton (SOLVER) Method
12.4 Nonlinzar Elimination and Feasible Direction Methods

Other Methods .

Questions for Chapter 12 .

Chapter 13 Other Optimization Problems .

3.1
13.2

Integer Programming .
Geometric Programming .

Questions for Chapter 13 .

Chapter 14 Non-differentiable Optimization .

14.1
142
143
14.4
14.5

Introduction

Optimality Condltlons

Exact Penalty Functions .

Algorithms .

A Globally Convergent Model A]gonthm

Questions for Chapter 14 .

References .

Subject Index .

General Lineaily Constrained Optimization

105
105
110
113
117

120
120
130
138
145
150
153

157
157
164
170

172
172
178
190
196
207
211

215

221

Chapter 7

Introduction

7.1 Preview

The motivation for studying constrained minimization has been discussed at some
length in Chapter 1 of Volume 1 of this book. The mathematical background given
there, and indeed many of the concepts which arise in unconstrained optimization,
are important in the study of constrained optimization. In this volume, the selection
of material from the extensive literature which exists has again been done with the
main theme of practicality in mind. Thus topics such as reliability and effectiveness
are uppermost; to some extent these are measured by convergence and rate of
convergence results. These aspects are therefore studied in some detail, and together
with the subject of optimality conditions they provide good material for an
academic course. However the use of experimentation to validate the properties of
an algorithm is still of paramount importance. In fact the study of constrained
optimization is by no means as well advanced as for the unconstrained case. The
writing of software is a much more complex task, and so comparative experimental
results are much less widely available. Often there is even a lack of suitable test
problems. Also many more special cases arise and the problem of assessing
numerical evidence is more difficult. For all these reasons Volume 2 departs from
the feature in Volume 1 of presenting detailed numerical evidence. Nonetheless
important experimental resuits do exist in the literature and the selection of
material is guided by such results. This lack of certainty also shows up in that the
decision as to precisely what algorithm to recommend in any one case is-often not
clear. For this reason the availability of good well-documented library software is
often poor. Thus I appreciate the fact that many algorithms are necessarily used
which are not ideal and I have tried to make users aware of defects in these algor-
ithms and to enable them to mitigate their worst effects.

The structure of most constrained optimization problems is essentially contained
in the following: ‘

minimize f(x) x € R"”
subject to ¢c;(x) = 0, iEF (7.1.1)
(‘f(X))O, i€l

Asin Volume 1, f(x) is the objective function, but there are additional constraint
Junctions e;(x),i=1,2,. .., p. Eis the index set of equations or cquality con-

1

e

2

straints in the problem, / is the set of inequality constraints, and both these sets are
finite. More general constraints can usually be put into this form: for example

¢;(x) < b becomes b - ¢;(x) = 0. If any point x' satisfies all the constraints in
(7.1.1) it is said to be a feasible point and the set of all such points is referred to as
the feasible region R. As in Volume 1, maximization problems are easily handled by
the transformation max f(x) = —min — f(x). Also, a local minimizer or solution
(referred to by x*) is looked for, rather than a global minimizer, the computation
of which can be difficuit. It is possible to fllustrate the effect of the constraints
when #n = 2 by drawing the zero contour of each constraint function. For an equality
constraint, the line itself is the set of feasible points; for an inequality constraint the
line marks the boundary of the feasible region and the infeasible side is conven-
tionally shaded. This is shown in Figure 7.1.1. Case (i) has constraints x = x3,

x = 0, which can be written ¢; (x) = x; — xi, ¢2(x) =x;,¢c3(x)=xp and £'= {1},
1=(2, 3}. Case (i) has constraints x 2 x7, x} +x3 < 1 which can be written as
ci(x)=x, — x3 ca(x)=1—xt - x3,1={1, 2}, and E empty. Formulation
(7.1.1) covers most types of problem; however the condition that some variables
x; take only discrete values is not included. This type of condition is covered in
integer programiming which is largely beyond the scope of this book. However a
useful general purpose algorithm is the branch and bound method which enables
the problem to be reduced to a sequence of smooth problems and hence solved by
other techniques given in this book. This is described in Section 13.1. Another type
of condition which is not included in (7.1.1) is a constraint of the form ¢;(x) >0;
something more is said about this case in Section 7.2. In fact there is often some
choice in how best to pose the problem in the first instance and a number of
possibilities of this type are discussed in Section 7.2.

It is assumed in (7.1.1) that the functions c;(x) are continuous which implies
that R is closed. It is also assumed that f(x) is continuous for all x € R and prefer-
ably for all x € IR™. If in addition the feasible region is bounded (3a > 0 such that
I x I < gV x €R), then it follows that a solution x* exists. If not then the problem
may be unbounded (f(x) —+ —e) or may not have a minimizing point. The problem
also has no solution when R is empty, that is when the constraints are inconsistent.
In fact most practical methods require the stronger assumption that the objective
and constraint functions are also smooth in that their first and often second con-
tinuous derivatives exist (£, ¢; € €' or €?). The notation V7 (= g) and V?f (= G) for

ol T A : el g
Cose {1} A i
Case { n) £

Figure 7.1.1 Examples of feasible regions

the gradient vector and Hessian matrix of fis described in Volume 1. The notation
Ve, and V3¢, is used to denote the corresponding first and second derivatives of any
constraint function ¢;. The vector Ve¢; is also denoted by a; and is referred (o as the
normal vector of the constraint ¢; . Note that a; refers to the ith vector in a set and
not to the ith component of a. These vectors are sometimes collected into columns
of the Jacobian matrix A (although this rule is contradicted in the simplex method
(Chapter 8) in which the normal vectors are the rows of A). The vector a; (that is
a;(x) evaluated at x = x') is the direction of greatest increase of ¢;(x) at x'. and if
¢; =0and i € [then the direction is on the feasible side of the constraint (see
Figure 7.1.2) and is at right angles to the zero contour. Most of Volume 2 assumes
the existence of these derivatives which can be used, for example, to characterize
optimality conditions, as described in Chapter 9, which generalize the results for
unconstrained minimization given in Volume 1, Section 2.1. This is not to say
necessarily that user supplied formulae for these derivatives are required in any
method. Mostly, however, formulae for first derivatives are required, and in some
cases formulae for second derivatives also. Methods which require no derivative
information have not been studied to any great extent and the obvious advice is to
estimate these derivatives by finite differences (see Volume 1), although the result-
ing algorithm is likely to be less robust and effective when this is done. A different
situation arises when the functions f and ¢; do not have continuous derivatives,
which is referred to as non-differentiable or non-smooth op timization. In this case
methods for smooth problems are not appropriate and special attention must be
given to the surfaces of non-differentiability. These behave somewhat like the
boundary of a constraint in (7.1.1) and it is therefore appropriate to discuss the
problem within the structure of this volume. This is done for unconstrained non-
differentiable optimization in Chapter 14: in fact it is also possible to generalize
these ideas to include both smooth and non-smooth constraint functions, but this
is beyond the scope of the book, although some references are given.

Another important concept is that of an active or binding constraint. Active
constraints at any point x’ are defined by the index set

= (XY= {0 e (xy= 0} (7.1.2)

so that any constraint is active at x" if x” is on the boundary of its feasible region. 1f
x is feasible then &' D K clearly follows. In particular the set .%/* of active con-
straints at the solution of (7.1.1) is of some importance. If this set is known then

c,lx)>0

Figure 7.1.2 The normatl vector

4

the remaining constraints can be ignored (locally) and the problem can be treated
as an equality constraint problem with £ = &/*. Also constraints with i & of* can
be perturbed by small amounts without affecting the local solution whereas this is
not usually true for an active constraint. An example is given by the problem:
minimize f(x) = —x; — x5 subject tox; 2 x% and x? + x2 < . Clearly from
Figure 7.1.3 the solution is achieved at x* = (1/v/2, 1/7/2)F when the contcur of
f(x) is a tangent to the unit circle. Thus the active set in the notation of = igure
7.1.1(H) is &* = {2}, and the circle constraint ¢,{X) is active. Likewise the parabola
constraint ¢, (x) is inactive and can be perturbed or removed from the problem
without changing x*. A further refinement of this definition to include strongly
active and weakly active constraints is given in Figure 9.1.2.

Methods for the solution of (7.1.1) are usually iterative so that a sequence
x(D x(®) x| sy is generated from a given point x(1), hopefully converging
to x*. If x* is a member of the sequence then the method is said to ferminate.
Some early methods for constrained optimization were developed in an ad hoc way
and are not strongly supported theoretically. Because of this these methods are
often unreliable and expensive for problems of any size and they are not described
here. However a review of what has been attempted is given by Swann (1974). The
subject of constrained optimization splits into two main parts, linear constraint
programming and nonlinear programming which have quite different features.
In linear constraint programming each constraint is a linear function ¢;(x) =
arx — b;. The boundary of the feasible region for any one such constraint is a
hyperplane, and the normal vector Ve; is constant and is ugain the vector a;. Linear
constraint problems can be handled by a combination of an elimination method
and an active set method (see Section 7.2) and the iterates x) are always feasible
points. The simplest cases are when the objective function is either linear or
quadratié (linear programming, or quadratic programming ~ Chapters 8 and 10
respectively) in both of which cases algorithms which terminate can be determined.
The application to a general objective function is given in Chapter 11, and in this
case many of the possibilities for unconstrained optimization in Volume 1 carry
over directly. For example there are analogues of Newton’s method, quasi-Newton

Contours of f A X2

\\
O e
, AN
SN

\\J

Figure 7.1.3 Active and inactive
constraints

methods, the Gauss—Newton method, restricted step methods, and no-derivative
methods which use finite difference approximations. Similar considerations hold in
regard to using line searches and in regard to deciding what type of convergence test
to use to terminate the iteration. Special cases of a linear constraint are the bounds
x;Z %; o1 X; < u; in which a; is te;, the ith coordinate vector, and it is particularly
simple to handle such constraints. It is important that algorithms should take this
into account,

The most difficult type of constrained minimization problem is nonlinear
programming (Chapter 12) in which there exist some non-linear constraint func-
tions in the problem. In this case a completely satisfactory general purpose method
has yet to be agreed upon and the subject is one of intense research activity. Of
course if the non-linear constraints can be rearranged so as to be eliminated directly
then this should be done, but is not usuaily possible. Indirect elimination by solving
2 system of equations numerically is possible (Sections 7.2 and 12.4) but is not
usually efficient and other difficulties exist; this idea is closely related to another
approach known as a feasible direction method. A different approach is to attempt
to transform the problem to one of unconstrained minimization by using penalty
functions (Sections 12.1, 12.2, and 14.3). Efficiency depends on exactly how this
is done, but it seems inevitable that some sort of penalty function must be used to
get good global convergence properties. In many algorithms the iteration is deter-
mined by modelling the original problem in a suitable way. In particular a
linearization of the constraint functions is often used. This is a first order Taylor
series approximation about the current iterate x(*;

@+ 8) ~ (&)= +a®Ts, i=1,2,...,p. (7.1.3)

The linearized function Q,(k) is defined in terms of the correction & to x(¥), the
superscript & indicating that it is made on iteration . This approximation enables
linear constraint subproblems to be solved on each iteration. As in Volume I,itis
also possible to make a quadratic model of the objective function. However to take
constraint curvature correctly into account it is appropriate to modify the quad-
ratic term in a suitable way. Methods of this type are very important, although to
obtain good global properties they must be incorporated with some type of penalty
function (Sections 12.3 and 14.3). A special case of nonlinear programming is
geometric programming in which the functions f and ¢; have a polynomial type
structure. It is possible to reduce this problem to a linear constraint problem which
is more readily solved (Section 13.2). Often linear constraints and bounds arise in
nonlinear programming problems: it is usually possible to take advantage of this
fact to make the algorithm more efficient.

These algorithms, in particular those for nonlinear programming, depend on a
study of optimality conditions for problem (7.1.1), and this theory is set out in
Chapter 9. In Volume 1, I tried to write parts of the book in simple terms, avoiding
the use of too much theory. To some extent I have done this here, for example in
the presentation of linear and quadratic programming. However constrained
minimization problems are much more complex than unconstrained problems and
it is important for the user to have some grasp of this theory. This is especially true

6

in regard to Lagrange muitipliers and first order conditions and [have tried to give a
simple semi-rigorous introduction in Section 9.1 showing how these multipliers
arise and can be interpreted. A more rigorous presentation then follows. The same
is true in regard to second order conditions in Section 9.3. Some simple notions of
convexity and duality for smooth problems appear in Sections 9.4 and 9.5. The
subject of non-differentiable op timization is arguably the most difficult that [have
tried to cover in this book. Some presentations of this subject are extremely
theoretical although I have tried to avoid this as much as possible. However at the
expense of introducing a little more theory concerning optimality conditions for
non-differentiable convex functions (Section 14.2), a reasonably elegant and not
too difficult treatment can be given. A discussion of algorithms (Sections 14.4 and
14.5) is also given.

7.2 Elimination and Other Transformations

There is considerable scope for making transformations to a constrained mini-
mization problem which reduce it to a form which is more readily solved. This can
be advantageous and a number of such possibilities are discussed. However it is
important to be aware from the outset that this procedure is not entirely without
risk and that solutions of the original and transformed problems may not correspond
on 3 one-to-one basis or that methods may not perform adequately on the trans-
formed problem. A number of examples of this are given in this section and else-
where in the book, and the user should be on his guard. The most simple possibility
for equality constraints is to use the equations to eliminate some of the variables in
the problem (elimination). If there are just m equations c¢(x) = 0 which can be
rearranged directly to give

X1 = 6(x,) (7.2.1)

where x, and x, are partitions of x in IR™ and IR" ™", then the original objective
function f(x,, X,) is replaced by

Y(x2) = f(D(x,), X3) (7.2.2)

and Y(x,) is minimized over x5 without any constraints, A simple example is given
in Question 7.3. Derivatives of ¢ are readily obtained from those of fand ¢ (see
Question 7.5). Some care has to be taken to avoid an ill-conditioned rearrangement
when forming (7.2.1), for instance with linear constraints it is advisable to use some
sort of pivoting on the variables. In some cases the method may fail completely, as .
shown in Question 7.4. In fact it is possible to discuss elimination in more general
terms, implicitly by first making a linear transformation of variables; this is
described in Section 10.1. In cases where no direct rearrangement like (7.2.1) is
available, it is possible to regard c(xy, X,) = 0 as a system of non-linear equations
which can be solved by the Newton—Raphson method (Volume 1, Section 6.2).

In doing this x, remains fixed and a vector x is determined which solves the
equations. Thus x; depends on x, and so the process implicitly defines a function
X1 = &(x;). This method is outlined in a more general form in Section 12.4;

however the process is not always the most efficient and there can be difficulties

in getting the Newton—Raphson method to converge. An alternative transformation
for the equality constraint problem is the method of Lagrange multipliers (Section
9.1) in which the system of non-linear equations (9.1.5) is solved which arises from
the first order necessary conditions. Except in special cases this system must be
solved numerically, which renders the method of little practical use. The method
can also fail, not only when the solution of (9.1.5) corresponds to a ¢constrained
maximum point or saddle point, but also when the regularity condition (9.2.4) does
not hold (see Question 9.14).

Elimination methods are not directly applicable to inequality constraint prob-
lems unless the set of active constraints of* is known. However it is possible to use
a trial and error sort of method in which a guess .« is made at the set of active
constraints, and constraints in &/ are then treated as equalities, neglecting the
remaining inequality constraints. The resulting equality constraint problem is then
solved by elimination or by the method of Lagrange multipliers, giving a solution
x. It is necessary to check that X is feasible with respect to the constraints which
have been ignored. If not, one of these is added to the active set and the above
process is repeated. If x is feasible then it is also necessary to check that the first
order conditions are satisfied. To do this requires the calculation of the correspond-
ing Lagrange multiplier vector . Since A; = 0f]dc; to first order measures the effect
of perturbations in the c; on f, it is necessary for an inequality constraint ¢;(x) > 0
that X; > 0 at the solution, for otherwise a feasible perturbation would reduce f
Thus if there are any A i <0, one such constraint must be remaoved from the active
set and the process repeated again. On the other hand, if > 0 then the required
solution is located. Methods of this type can be used in an informal way on small
problems. However they are most useful in solving all types of linear constraint
problem when systematic procedures can be devised. Such methods include the
simplex method for linear programming and the active set method for all types of
linear constraint programming. So-called exchange algorithms for best linear I , and
L. data fitting are also examples of this type of procedure. Systematic procedures
using active set methods for non-linear constraints based on solving the equality
constraint problems by implicit elimination can also be devised (Section 12.4) but
there are some difficulties which are not readily overcome. It is difficult to handle
constraints of the form ¢;(x) > 0 in an active set method because the feasible region
is not closed and the constraint cannot be active at a solution. However it can be
useful to include them in the problem via the transformation ci(x) = € >0, possibly
solving a sequence of problems in which € | 0 if the constraints happen to be active.
The reason for doing this might be to prevent or dissuade f (x) being evaluated at an
infeasible point at which it is not defined (for example the problem: min x log, x
subject tox > 0). It may not be satisfactory just to ignore the constraints because
the problem may then become unbounded or have a global solution with
¢;(x) < 0, which is of no interest. :

Some other transformations are worthy of note which relate equality and
inequality constraint problems. For example a constraint ¢;(x) =0 can be equiv-
alently replaced by two opposite inequality constraints c;(x)=0and -¢;(x)=0.

B8

This enables (7.1.1) to be reduced to an inequality constraint problem. However
there are some practical disadvantages due to degeneracy and other reasons and the
idea is best avoided, although it can occasionally be useful. The alternative poss-
ibility is to write ¢;(x) > O as the equality constraint min(c;(x), 0) = 0. Unfor-
tunately this function is not a €* function and so is usually excluded on this count.
Another possibility is to replace a constraint ¢;(x) > 0 by adding an extra varizble,
z say, giving an equality constraint ¢;(x) = z and a bound z > 0. The variable z is
referred to as a slack variable since it measures the slack in the inequality constraint,
This transformation is most useful in the simplex method for linear programming
which requires all general inequality constraints to be handled in this way, but is
not necessary in active set methods which treat inequalities of any type directly.
Furthermore, following an idea introduced later in this section, it is possible to do
away with the need for the bound z > 0. This is done by adding a quadratic slack
variable y and replacing ¢;(x) > O by the (nonlinear) equality constraint ¢;(x) = y2.
This removes the need to treat inequality constraints directly. However this trans-
formation does cause some distortion as explained below and in this case it may be
somewhat dangerous, in particular because of the following feature. Let for example
¢(x) >0 be the only constraint and let x” be such that ¢’ = 0 and g' = a'\" where

N\ < 0. Then x’ and X' do not satisfy first order conditions for a solution. Yet the
vector x’ augmented by y' = 0 does satisfy first order conditions in the transformed
equality constraint problem with the same \". Thus the transformation does not
seem to be able to distinguish whether or not constraints are active on the basis of
first order information. I have also heard bad reports of quadratic slacks in practice
which might well be accountable for in this way.

Many other useful transformations arise in constrained optimization and are
used in subsequent chapters. Perhaps the most well-known idea is the use of penalty
functions for nonlinear programming. The idea is to transform the problem to one
of unconstrained optimization by adding to the objective function a penalty term
which weights constraint violations. In sequential penalty functions x* is found as
the limit of the minimizing points of a sequence of penalty functions, as some con-
trolling parameter is changed. More recently the value has been realized of an exact
penalty function which has x* as its local minimizer. These transformations are
described in some detail in Sections 12.1, 12.2, 12.5, and 14.3. Other transform-
ations of some importance are those arising in duality (Section 9.5), integer
programming (Section 13.1), and geometric programming (Section 13.2), amongst
others.

It is also possible to make transformations of variables in an attempt to simplify
the problem. For example the bound x; = 0 can be removed by defining a new
variable y; which replaces x;, such thatx; = y, Then for any y; in (oo, o) it
follows that x; > 0 so the bound does not need to be explicitly enforced. Another
similar transformation for ; <x; <u; is to let y; satisfy x; = ¢; + (u; —)i’ y;.
For strict constraints x; > 0 it is possxble to use x; = e”i, The advantage of these
transformations is that they do extend the range of problems which can be handled
by an unconstrained minimization routine. This is not to say that minimization
with simple bounds £; < x; < u; is at all difficult; in fact the opposite is true and

it is probably more efficient to treat the problem directly. It is simply that sub-
routines which minimize functions subject only to bounds are much less readily
available to the user at présent. These ideas can also be used to transform inequality
constraints to equalities (see above in regard to quadratic slacks), although this
possibility should be viewed with some suspicion for the reason given above. These
transformations do cause some distortion which often may not be favourable For
example the problem min x? subject tox > 0, after transforming x = y2, becomes
min y*. This has a singular Hessian at the solution which causes any standard
minimization method based on a quadratic model to converge slowly. Another
example is Lthe convex programming problem min(x — 1)? subject tox = 0.
Although the transformation is well behaved at the solution x* = 1, it induces a
stationary point with a non-positive-definite Hessian matrix at x = 0 and both these
features could possibly cause difficulties (see alsc Question 7.6). Thus although
such transformations can be useful, the user should be aware that they are not
entirely risk free.

Another transformatlon which enables | x; | functlons to be handled is to
replz;ce the variable x; by two non-negative variables x;* and x;~ representing the
- “positive and negative parts of x; (that is max(x;, 0) and max(—x;, 0)). The con-
ditions x;* = 0 and x,~ > 0 are explicitly mcluded in the problem; also whenever
X; appears in the problem it is replaced by x;* — x;~ and similarly | x; | is
replaced by x, +x;~ (see Question 8.12). This latter replacement is only valid
if one of x;* orx; is zero, which can sometimes be guaranteed, for example in
otherwise linear problems when bothx;* and x;~ together cannot be basic
(Chapter 8). This transformation can also be used to handled unbounded variables
in a linear programming prcblem. An alternative technique for handling | x; | terms
is described in Section 8.4. These ideas can be extended to functions | ¢;(x) | by
adding extra variables y; and the equality constraint c;(x) = y; (see Question 8.11),
thus enabling L, approximation problems to be handled by smooth techniques.
Similar ideas for minimizing max functions or L., functions can be tackied by
introducing an extra variable v as described in Section 14.1. However all these
techniques are really attempting to solve non-differentiable optimization problems
as smooth problems. In the current state of the art this can be useful, but when
software becomes readily available for some of the better more direct methods
described in Sections 14.4 and 14.5, these should be preferred.

Finally the very important transformation of scaling either the constraints or the
variables in the problem is discussed. Scaling of a constraint set is achieved by multi-
plying each constraint function by a constant chosen so that the vatue of each con-
straint function, evaluated for typical values of x, is of the same order of magni-
tude. This can be important in that this scales the Lagrange multipliers (inversely)
and so can make more reliable the test on the magnitude of a multiplier which is
used in some algorithms. A well-scaled matrix is also important in some linear
algebra routines when pivoting tests are made. Moreover when using penalty func-
tions which involve quantities like cTc or lic Il,, it is important that constraints are
scaled. In a similar way scaling of the variables can sometimes be important. This
again arises when pivoting tests on the variables are made, or when implicitly using

10

some norm of the variables, for example in restricted step methods or methods with
a bias towards steepest descent (see Volume 1). In practice variables are usually
scaled by multiplying each one by a suitable constant. However a non-linear scaling
which can be useful for variables x; > 0 is to use the transformation x; = ¢”7. Then
variables of magnitudes 1076, 1073, 10°%, 103, . . ., say, which typically can occur
in kinetics problems, are transformed into logarithmic variables with magnitudes
which are well scaled.

Questions for Chapter 7

1. Calculate the Jacobian matrix VT of the linear system 2(x)= ATx — b. If ¢ is
obtained by linearizing a non-linear system as in (7.1.3) show that both systems
have the same Jacobian matrix.

2. Obtain the gradient vector and the Hessian matrix of the functions f(x) + A(c(x))
and f(x) + AT ¢(x). In the latter case treat the cases both where A is a constant
vector and where it is a function A(x).

3. Find the solution of the problem minimize —x — » subject tox? +y% =1 by
graphical means and also by eliminating x, and show that the same solution is
obtained. Discuss what happens, however, if the square root which is required
is chosen to have a negative sign.

4. Solve the problem minimize x + y? subject to (x —~ 1)* =»? both graphically
and also by eliminating y. In the latter case show that the resulting function of
x has no minimizer and explain this apparent contradiction. What happens if the
problem is solved by eliminating x?

S. Consider finding derivatives of the functions ¢(x,)and Y(x,) defined in (7.2.1)
ard (7.2.2). Define partitions

(%1 =(81 _[As
AR AR
and show by using the chain rule that V, ¢ = —A, AT ! and hence that
Vo0 =g, — AA7 g, . Second derivatives of i are most conveniently obtamed
asin (12.4.6) and (12.4.7) by setting vT =[0:1] andhence ZT = [-A,AT! : 1]
and 8T = [AT!:0].

6. Consider the problem minimize f(x, X,) subject tox| =0, x, = 0 when the
transformation x = y2 is used. Show that x = 0 is a stationary point of the trans-
formed function, but is not minimal if any g} < 0. If g’ = 0 then second order
information in the original problem would usually enable the question of
whether x” is a minimizer to be determined. Show that in the transformed
problem this cannot be done on the basis of second order information.

Chapter 8

Linear programming

8.1 Structure

The most simple type of constrained optimization probiem is obtained when the
functions f(x) and c;(x) in (7.1.1) are all linear functions of x. The resulting
problem is known as a linear programming (LP) problem. Such problems have been
studied since the earliest days of electronic computers, and the subject is often
expressed in a quasi-economic terminology which to some extent obscures the basic
numerical processes which are involved. This presentation aims to make these pio-
cesses clear, whilst retaining some of the traditional nomenclature which is widely
used. One main feature of the traditional approach is that linear prograrnming is
expressed in the standard form

minimize f(x)4 cTx
X 8.1.1)
subject to Ax = b, x =0,

where A is an m x n matrix, and m < n (usually <). The symbol 4 means ‘defined
by’. Thus the allowable constraints on the variables are either linear equations or
non-negativity bounds. The coefficients ¢ in the linear objective function are often
referred to as costs. An example with four variables (n = 4) and two equations
(m=2)is

minimize x; + 2x,; +3x3 +4x,

subjecttox; + x;+ x3+ x4=1
X + x3—3x4=§,

X1>O,X2>O,X3>O,X4>O.

(8.1.2)

More general LP problems can be reduced to standard form without undue diffi-
culty, albeit with some possible loss of efficiency. For instance a general linear
inequality a'x < b can be transformed using a slack variable z (see Section 7.2) to
the equation a’x + z = b and the bound z > 0. Alternatively the dual transform-
ation can sometimes be used advantageously to obtain a standard form and this is
described in more detail in Section 9.5. More general bounds x; = £, can be dealt
with by a shift of origin, and if no bound exists at all on x; in the original problem,
then the standard form can be reached by introducing non-negative variables x,*

11

M/

12

and x; 7, as described in Section 7.2. In fact very little is lost in complexity if the
bounds in (8.1.1) are expressed as

e<x<u, (8.1.3)

as Question 8.8 illustrates. The merit of using other possible standard forms is dis-
cussed in more detail in Section 8.3. However for the most part this text will
concentrate on the solution of problems which are already in the standard form
(8.1.1).

It is important to realize that a problem in standard form may have no solutior,
either because there is no feasible point (the problem is infeasible), or because
f(x) > —oo for x in the feasible region (the problem is unbounded). However it is
shown that there is no difficulty in detecting these situations, and so the text
concentrates on the usual case in which a solution exists (possibly not unique).

It is also convenient to assume that the equations are independent, so that they
have no trivial linear combination. In theory this situation can always be achieved,
either by removing dependent equations or by adding artificial variables (see Section
8.4 and Question 8.21), although in practice there may be numerical difficulties if
this dependence is not recognized.

If (8.1.1) is considered in more detail, it can be seen that if m = n, then the
equations Ax = b determine a wnique solution, and the objective function ¢'x and
the bounds x > 0 play no part. In most cases however m <n, so that the system
Ax = b is underdetermined and n — m degrees of freedom remain. In particular the
system can determine only m variables, given values for the remainingn — m
variables. For example the equations Ax = b in (8.1.2) can be rearranged as

x;=%—x;+3x,

8.1.
X2 = % - 4X4 (4)
which determines x; and x, given values for x3 and x4, or alternatively as
x; =4 —4x3-x3 (8.1.5)

Xg=§ —4x,

which determines x, and x4 from x, and x3, and in other ways as well. It is import-
ant to consider what values these remaining n — m variables can take in the standard
form problem. The objective function ¢ x is linear and so contains no curvature
which can give rise to a minimizing point. Hence such a point must be created by the
conditions x; > 0 becoming active on the boundary of the feasible region. For
example if (8.1.5) is used to eliminate the variables x| and x4 from the problem
(8.1.2), then the objective function can be expressed as

f=x1+2x2 +3X3+4X1=¥+QX2+2X3. (8.1.6)

Clearly this function has no minimum value unless the conditionsx, 2 0,x3 = 0

are imposed, in which case the minimum occurs when x; =x3 = 0. An illustration is
given in Figure 8.1.1 for the more simple conditions x, +2x, =1andx, 20,

x5 = 0, The feasible region is the line joining the points a = (0,)T and b = (1, 0. e
When the objective function f(x) is linear the solution must occur at eitheraorb

X+ 2x=1

Figure 8.1.1 Constraints for a simple LP problem

with eitherx; =0 orx, = 0 (try different linear functions, for example f=x, +x,
or f=x; +3x,), If however f(x) = x, + 2x, then any point on the line segment is
a solution and this includes both a and b. This corresponds to the existence of a
non-unique solution.

To summarize therefore, a solution of an LP problem in standard form always
exists at one particular extreme point or vertex of the feasible region, with at least
n — m variables having zero value, and the remaining m variables being uniquely
determined by the equations Ax = b and taking non-negative values. This result is
fundamental to the development of LP methods, and can be established rigorously
using the notions of convexity (Section 9.4). The proof is sketched out in some
detail in Questions 9.20 to 9.22.

The main difficulty in linear programming is to find which n — m variables take
zero value at the solution. The earliest method for solving this problem is the
simplex method, which tries different sets of possibilities in a systematic way. This
method is described in Section 8.2 and is still predominant today, albeit often in
more sophisticated forms. Different variations of the method exist, depending upon
exactly which intermediate quantities are computed. The earliest tableau Sform
became superseded by the more efficient revised simplex method, both of which
are described in Section 8.2. More recently methods based or using matrix fac-
torizations have been suggested in order to control round-off errors more effec-
tively. For large sparse LP problems, product form me thods have enabled problems
of up to 10% variables to be solved in practice. Both these developments are
described in Section 8.5. An apparently different approach to LP is the active set
method described in Section 8.3 which, however, turns out to be equivalent to the
simplex method with slack variables, although different intermediate matrices are
stored. The problem of calculating initial feasible points for LP and other linear
constraint problems is described in Section 8.4. All these methods have one possible
situation in which they can fail to solve a problem which has a well-defined solution.
This is referred to as degeneracy and is described in Section 8.6.

8.2 The Simplex Method

The simplex method for solving an LP problem in standard form generates a
sequence of feasible points x(1?, x(3)_ _ which terminates at a solution. Since

