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I First-Order Differential Equations

1 Introdu.ction

A differential equation is an equation between §pecified derivatives of a
function, its values, and known quantities. Many laws of physics are
most simply and naturally formulated as differential equations (or DE’s,
as we shall write for short). For this reason, DE’s have been studied by
the greatest mathematicians and mathematical physicists since the time
of Newton.

Ordinary differential equations are DE’s whose unknowns are func-
tions of a single variable; they arise most commonly in the study of
dynamic systems and electric networks. They are much easier to treat
than partial differential equations, whose unknown functions depend
on two or more independent variables.

Ordinary DE’s are classified according to their order. The order of a
DE is defined as the largest positive integer, n, for which an nth deriva-
tive occurs in the equation. This Chapter will be restricted to real first-
order DE’s of the form '

d,y,¥)=0. (1)

Given the function ¢ of three real variables, the problem is to determine
all real functions y = f(z) which satisfy the DE, that is, all sotutions of -
(1) in the following sense. ,

m DerFINITION. A solution of (1)1s a differentiable function f(x) such that
é(z, f(z), f'(x)) = 0 for all x in the interval where f(x) 15 defined. '

ExamMpLE 1. In the first-order DE
r+yy' =0, (2)



2 First-Order Differential Equations © [Ch.1)

the function ¢ is a polynomial function ¢(z, y, z) = = + yz of the three
variables involved. The solutions of (2) can be found by considering the
identity d(22 + y?)/dx = 2(x +yy’). From this identity, one sees that
.22 4y =C is & constant if y = f(z) is any solution of (2). '

The equation 22 + y2 = C defines y implicitly as a two-valued function
of z, for any positive constant C. Solving for y, we get two solutions, the
(single-valuedt) functions y = + \/ C — 22, for each positive constant C.
The graphs of these solutions, the so-called solution curves, form two
families of semicircles, which fill the upper half-plane y >0 and the
lower half-plane y < 0, respectively.

On the z-axis, where ¥ = 0, the DE (2) implies that z = 0. Hence the
DE has no solutions which cross the z-axis, gxeept possibly at the origin.
This fact is easily overlooked, because the solution curves appear to
cross the z-axis to form full circles, as in Figure 1.1. However, these

Ry

-

Figurg 1.1 Integral Curves of = + yy’ = O.

circles have infinite slope where they cross the z-axis; hence y' does not
exist, and the DE (2) is not satisfied there.

The preceding difficulty also arises(if one tries to solve the DE (2)
for y'. Dividing through by y, one gets ¥’ = —2/y, an equation which
cannot be satisfied if y = 0. The preceding difficulty is thus avoided if
one restricts attention to regions where the DE (1) is normal, in the
following sense.

a DEFINITION. A normal first-order DE is one of the form

y = F(z,y). (3)

+ In this book, the word “‘function’ will always mean single-valued function, unless the
contrary is expressly specified.
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In the norma} form 3’ = —z/y of the DE (2), the function F(z, y) is
continuous in the upper half-plane y > 0 and in the lower half-plane
where y-< 0; it is undefined on the z-axis.

2 Fundamental theorem of the calculus l @

The most familiar class of differential equations consists of the ﬁrst-
order DE’s of the form
Y =g(x). ‘ (4)
Such DE’s are normal; their solutions are described by the funda.mental
theorem of the calculus, which reads as follows

8 FUNDAMENTAL THEOREM OF THE CALCULUS. Let the function g(z) in
DE (4) be continuous in the interval a < x < b. Given a number c, there is
one and only one solution f(z) of the DE (4) in the interval such that f(a) =
“c. This solution is given by the definite integral

f@y=c+[owd,  c=fa). (5)

This basic result serves as a model of rigorous formulation in several
respects. First, it specifies the region under consideration, as a vertical
“strip @ £ z < b in the zy-plane. Second, it describes in precise terms the
. class of functions g(z) considered. And third, it asserts the existence and
uniqueness of a solution, given the ““initial condition” f(a) = c.
We recall that the definite integral

f’g(:)dz= Lm Y gte) Ate,  Ate=tr—te-, (5')
a max At, >0

is defined for each fixed x as a limit of Riemann sums; it is not necessary
to find a formal expression for the indefinite integral fg(x)dz to give
meaning to the definite integral [Zg(t) dt, provided only that g(t) is
continuous. Such functions as the error function erf z = (2/ \/ ) JEe2de
and the sine integral function Sl(z)=[F[(sinf)/t] dt are indeed com-
monly defined as definite integrals; cf. Chapter 3; §1. .

To formulate and prove analogous theorems for more general first-
order normal DE’s, we need some technical concepts. We define a
.domaint as a nonempty open connected set. A function ¢ = ¢(zy, ..., zr)
is said to be of class " in a doma.in_ D, when all its derivatives d¢/oz,,
02$/0zy éxy, --- of orders 1, -+, n exist and are continuous in D. One
writes this condition in symbols aspe%min D, or 6 € €%(D). When ¢

t Some authors say region where we say domain. We will call the closure of a domain
8 closed domain.
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ie merely assumed to be continuous in D one writes € € in D, or
¢ € €(D).

- Intervals appear so frequently in analysis that they are referred to by
a special notation. Thus, the closed interval a < = < b, which is not a
domain (why not?) is denoted by [a, b], the open interval a <z < b by
(a, b), the positive semi-axis 0 < . < +-00 by [0, +0), and 50 on. Gen-
erally, a round bracket indicates that the endpoint adjacent to it is
excluded from the interval, and a square bracket that the adjacent
endpoint is included.

Given F(z), the notation F € €2[1, 4 0) thus means that F is twice
continuously differentiable in the semi-infinite line [1, + ). Considered
as a function of the two variables z and y, F is of class ¥2 in the closed
domain including the vertical line z = 1 and all points to the right of it
in the zy-plane. Likewise, F € [0, 1] means that F is continuous in
the vertical strip 0 <z < 1. Where there is any question of just what
domain is referred to below, the doma.m will be described in words as
well as in symbols.

There are a number of obvious facts about the differentiability of
‘solutions of DE’s. Such facts about differentiability will be used without
special comment where they are irrelevant to the main idea of a proof.
For instance, if g € ¥*(a, b), and y = f(z) is any solution of the DE
y' =g(z),theny e %’“1(a, b). Again, if $ € ¢*and ¢ € " in a domain D,

‘and F(u,v)e¥" in the entire uv-plane, then G'(x, y)=F (¢(z,y),
#(z,y) € €%(D). '

3 Solutions and integrals

According to the definition given in §1, a solution of a DE is always a
function. For example, the solutions of the DE z + yy' = 0 in Example
1 are the functions y = +./C —«2? whose graphs are semicircles of
arbitrary diameter, centered at the origin. The graph of the solution
curves are, however, more easily described by the equation z2 4 42 =C,
-describing & family of circles centered at the origin. In what sense can
such a family of curves be considered as a solution of the DE? To
answer this question, we require a new notion.

 DErINrTIoN. An integral of DE (1) is a function of two variables,
u(z, ), which assumes a constant value whenever the variable y is replaced
by a solution y = f(x) of the DE.

In the above example, the function u(z, y) = 22 +y?2 is an integral
of the DE = + yy' = 0, because, upon replacmg the vamable y by any

function + ./C — 72, we obtain u(z, y) =
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The second-order DE.

d3x , R
'aTz‘ =%, (29
becomes a first-order DE equivalent to (2) after setting dz/dt = y: -
‘ dy _ :
Y5 = (2)

As we have seen, the curves u(z, y) = 22 +y? are integrals of this DE.
When the DE (2') is interpreted as an equation - of motion under
Newton'’s second law (see, for example, the discussion in Chapter 5,
§7), the integrals ' = 2 4 y2 represent curves of constant energy C.
This illustrates an important principle: an integral of a DE representing
some kind of motion is a quantity that remains unchanged through the
motion. ,
The relationship between solutions and integrals of the DE (1) will

be made clear by the following theorem. )

® IMPLICIT FUNCTION THEOREM.T Lel u(x, y) be a function of class €»
in a domain containing the point (2o, yo), and let du(xo, yo)]dy # 0. Then
there exists a unique function y = f(x, C) of class €*, defined tn some open
interval (a, b) containing xo, such that yo = f(xo, C) and u(z, f(x, C)) =C
for all x in (a, b) and for all C in an open interval. :

By the Implicit Function Theorem, every integral u(x, y) of class €1
of the DE (¥ defines a family of solutions near any point (x, ) where
du(r, y)/ox # 0, obtained by solving the equation u(z, y) =C for the
variable y.

The notion of integral has been defined in terms of a solution of a
DE. For several classes of DE’s, however, it is possible to verify that a
function u(z, y) is an integral without first finding any solution. For
example, a function u(z, ) of class ¢1is.an integral of the quasilinenr
DE

¢ y.y)=Maxy) +Nxyy =0

whenever
u ou
M(x,y)-——N(:c, ?/)"‘=0,

provided that ou/dy 5 0, as can be verlﬁed from the famlhar formula
dyjdz = —(ou/ox)[(ou/oy).

t Courant, Vol. 2, p. 114; Widder, p. 55. Here and below, page references to authors
refer to the books listed in the selected bibliography on pp. 355-357.
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A similar method can be applied to DE’s of finite degree in the
derivative ¥/, namely, when the function ¢(z,y,y’') is a polynomlal
in the variable y' (see §8). '

Parametric Solutions. A pair of functions z =g(t), y = k(t) of the
parameter ¢ describe a curve in the zy-plane. Such a curve is a parametric
solution of DE (1} whenever the function k(t} = f(g{t)) for every solution

.y = f(z) of the DE, as t ranges over the interval of definition of the
functions ¢ and A. If u(g(?), k(t)) is constant, then the function u(z, y)
is an integral of the DE. '

Thus we see that there are three different notions of ‘‘solution’’ of a
first-order DE (1): a function y = f(z), and integral u(z, y)=C, cor-
responding to an implicit solution, and a parametric curve x = a(t),

y = h(t).

4 Regular and normal curve families

Let the function u(z, y) be of class ¥! in a region of the zy-plane. The
points in the region where both partial derivatives of u vanish are called
critical points. We shall always assume in this book (unless the con-
trary is explicitly stated) that the function ' has but a finite number of
critical points. This implies that the critical points of u are isolated.
The reason for this assumption is that it allows us to study the contour
lines of u in the neighborhood of a critical point.

For example, the function 4 = x2 -+ y2 has just one critical point in
the entire plane; this is at the origin, through which indeed no contour

-line passes. The contour lines u =C sa.tlsfy the following three con-
ditions in any domain D not containing any critical points: (i) one and
only one curve of the familv passes through each point of D, (ii) each
curve of the family has a tangent at every peint, and (iii) the tangent.
direction is a continuous function of position.

We call any curve family which satisfies conditions (i)-(iii) a regular

~ curve family. The contour lines of any function u(z, y) € ¢! form a

regular curve family in any domain that contains no critical points.
In Example 1, the families of solution curves y = :{;\/ C —z2? are not
only a regular curve family in each half-plane but, in addition, the
functions f(z,C) = ./€ —2? and g(z,C)= —\/O — 22 satisfy 9f/oC =
1/2y > 0 when y > 0, and &g/éC = —1/2y > 0 when y < 0, respectively.
They constitute a normal curve family, as in the following. ‘

w DeFINITION. In a domain D of the zy-plane, a normal curve family is
. a family of curves defined explicitly as the graphs of functions y = f(z, ¢),
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fe€1(D), which depend on a parameter ¢ =c(x,y) which 18 defined
on D and satisfies dc[dy # O there.

Since, for fixed z, (df/dc)(dc/dy) = 1, it is equivalent to requu'e that
of joc # 0.

The relationghip of regular and normal curve families to first-order
DE’s is given by the following result.

u THEOREM 1. For curve families in a domain [ of the xy plane:
(i) every mormal curve family 18 regular;

(ii) a‘regular curve family is normal in any domain where no tangent to
any curvé of the family is vertical,;

(iii) the functions y = f(x, c) defining a normal curve family are the solu-
tions of a normal first-order DE;

(iv) the functions u(x,y) =C defining any regular curve family are the
solutions of a first-order partial DE '

ou ou
M(x,y)@_N(xay)’é;=Oy

(v) inany domain where a regular curve family is normal, the curves of the
family are the integrals of the quasilinear DE

M, y) +N@, y)y =0. (6)

The proof is essentially contained in the preceding discussion.
Statement (i) is an immediate consequence of the definition of a normal
curve family. Statement (ii) is & consequence of the Implicit Function
Theorem, stated in the preceding Section.

Statement (iii) is seen to be true as follows. By definition of a normal
curve family, we have df/dc # 0; applying the implicit function theorem
to solve this equation for the parameter c, we find that there is a function
¢ =g(x,y) of class &' for which y = f(z, g(z, y)). Differentiating y =
f(:c ¢) reldtive to z, we find tha.t

¥ = of (z, g(z, yYox = F(z, y),

as was to be shown.
Statement (iv) follows by setting M(x, y) = 3u(a: y}/x and N(z, y) =
du(z, y)/ %y, and statement (v) followg from the identity
dy  oulox
dz— ouloy’

ExamrLE 2. In Example 1, the curves u(x, y) = 22 +y2 =cform a
regular curve family of integrals of the implicit DE z = —yy’. .
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The curves y = -f—, /e — x2, for ¢ > 0, form & normal famxly of curves,
solutions of the DE in norma.l form

¥y =—zly

in the domain D consisting of the upper half-plane. There is only one
critical point, namely the origin.

We have already sepn that the solution curves y = ¢ -+ f(x) for.y’ =
~ g(z) form a normal curve family in the strip e < » < b.if ge ¥Ja, b),
with dy/dc = 1. See Figure 1.2, which depicts solution curves for the
DE y' = e-2%.

Fiaure 1.2 Solution Curves of y' =e-#2,

It is important to notice that, on the basis of the preceding theorem,
we can construct DE’s whose solution curves behave in any desired
way: we simply draw on a region of the plane a normal family of curves.

Exampie 3. Let§ = g(x)h(y) be any DE with sepa.rable varlables
(and g, % continuous). Then the indefinite integrals ¢(z} = [ g(x)dx and
w(y) =[ dy/h(y) exist in any horizontal strip y: < g(z) <y2 between
successive zeros of A(y). The implicit equation u(z, y) = ¢(x) —$(y) = ¢
defines a regular family of integral curves in each such strip since
ou/dy = 1/h(y) # O has constant sign there.

In (6), the points where M = N =0 are the critical points; they
are points where the tangent direction is indeterminate; because
(6) reduces to y' = 0/0 there. Thus, in Exa.mple 1, the origin is such a
point, and we see that no integral “curve” passes through it. The
behavior of solutions near critical points Wlll be discussed in Chapter 5;
it can be very complicated.

Moreover until Chapter 6, §14, we will not even prove the basic fact
that, if F € ¢1(D), the solution curves of ¥’ = F(z, y) form a normal
curve family in D. For the present, in order to give precise formulations

TM
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and proofs of theorems in a recasonably short space, we shall have to
content ourselves with much less sweeping conclusions.

$ ~ Exact differentials; integrating factors

A differential M dx + N dy (M, N € 4(D)) is called exact in a domain
D when the line integral ‘

J. Mz, yydx + N(z, y)dy

is the same for all paths of integration 7 in D which have the same
endpoints. It is shown in the calculust that M dx -+ N dy is exact if
and only if there exists a continuously differentiable function %(z, y)such
that M == 9u/dx and N = ou/dy, that is, such that the total differ-
ential du = (oujox)dx + (éujoyjdy is M dx -+ N dy. For cortinuously
differentiable M, N, a necessary condition for M dx -+ N dy to be exact
is that-M and N satisfy the partial DE oM |9y = oN/ox; if D is simply
connected, this condition is also sufficient.
We now consider first-order DE’s of the form

¢($, Yy ?/’)ZM(I, ?/) '{'N(I, y)y’:O (7)

with M, N €% in a domain D. Dividing by N, we obtain the alge-
braically equivalent normal form

Y = F(x,y)= —M(=x,y)/N(, y) (7)

except on the closed set waere N vanishes, i.e., where d¢/0y" = 0. This
set (the z-axis in Examplé 1) divides the domain D into a number of
subdomains, in each of which the normal form (7’) is equivalent to (7).

It is often stated that the solution curves of the DE (7) are the contour
lines wu(z, y) = C, whenever M dr 4 N dy = du is an exact differential.
But this is not true, as Example 1 shows. A correct statement of the
relation in question is the following.

m ThEOREM 2. If M(x, y)dx + N(x, y) dy s an exact differential du in
a domain D, then the contour lines u(x, y) = C are integral curves of (7)
for any constant C. These contour lines form a regular curve family in the
domain D*, consisting of D with the critical points where M = N =0 (that
18, where grad u = 0) deleted. '

The proof is immediate, for any continuous M, N. Along any solu-
tion curve ¥ = f(x), we have
duldx — duldx + Yy ouldy = M(x, y) + N(z, y)y' = 0.

t Courant, Vol. 2, p. 352; Widder, p. 251.
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The regularity of the family of contour lines follows directly from the
implicit function theorem. They form a normal family in any sub—
domain where N does not vanish.

- When the differential M dz + N dy is not exact, one can often find a
function u(z, y) such that the product

(pM) dz + (uN) dy = du

s 3n exact differential. The contour lines u(z, y) = C will then again be
integral curves of the DE M (z,y) + N (z, y)y’ = 0 because du/dx =
p#(M + Ny') = 0; and segments of these contour lines between points of
vertical tangency will be solution curves. Such a function p is called an
integrating factor. .

® DEFINITION. An integrating factor for a diﬁerenéial Mz, y)ydr +
N(z,y)dy is a nonvanishing function u(r,y) such that the product
(uM)dz + (uN)dy is an exact differential.

For example, consider the DE zy’ = y. The differential x dy — y dx
which is associated with it is not exact, but it has the integrating factor
1/(xz® + y?) in the right half-plane x > 0. In fact, the function 6(z, y)
defined by the line integral

. (z.y) .
f(z, y) = f( L, @dy—ydo)@+y?)

is the angle made with the positive z-axis by the vector (z, y). That is, it
is just the polar angle 6 when the point (z, y) is expressed in polar co-
ordinates. Thus, the integral curves of xy’ = y in the domain z > 0 are
the radii § = C, where —n[2 < § < 7/2; the solution curves are the same.

Note that the differential (x dy — y dz)/(z2 + ¥2) is not exact in the
punctured plane, consisting of the xy-plane with the origin deleted. For
¢ changes by 2= in going sround the origin. This is possibie, even though
oz/(22 + y?)}/0x = A —y/(x? +- y?)]/ Py, because the punctured plane is
not a simply connected domain.

EXERCISES A

1. Plot the integral curves of the DE y” = y*/z%. In which regions of the plane
do they form a regular curve family? A normal curve family?

2. Find equations describing all solutions of y' — (z + y)2.

3. Find equations describing all solutions of ' = (2 + y)~1.

4. Show that if a normal curve family is invariant under horizontal translatlon,
then the curves of the family are the solytion curves of a DE of the form ¥ =fy).
5. Find all functions f(zx) whose definite mtegra.l between 0 and any z equals the
reciprocal of f(z). [HinT: DE is y’ = —y3.]

6. For what pairs of positive integers n, r is the function |z|» of class €7?



