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PREFACE

This book is the English version of the French “Géométrie non commuta-
tive” published by InterEditions Paris (1990). After the excellent initial transla-
tion by S.K. Berberian, a considerable amount of rewriting was done and many
additions made, multiplying by 3.8 the size of the original manuscript. In par-
ticular the present text contains several unpublished results.

My thanks go first of all to Cécile whose patience and care for the manuscript
have been essential to its completion. This second version of the book greatly
benefited from the modifications suggested by many people: foremost was
Marc Rieffel, but important contributions were made by D. Sullivan, J.-L. Loday,
J. Lott, J. Bellissard, P. B. Cohen, R. Coquereaux, J. Dixmier, M. Karoubi, P. Krée,
H. Bacry, P. de la Harpe, A. Hof, G. Kasparov, J. Cuntz, D. Testard, D. Kastler,
T. Loring, J. Pradines, V. Nistor, R. Plymen, R. Brown, C. Kassel, and M. Gersten-
haber, with several of whom I have shared the pleasure of collaboration.

Patrick Ion and Arthur Greenspoon played a decisive role in the finalisa-
tion of the book, clearing up many mathematical imprecisions and considerably
smoothing the initial manuscript. I wish to express my deep gratitude for their
generous help and their insight.

Finally, my thanks go to Marie Claude for her help in creating the picture
on the cover of the book, to Gilles who took the photograph, and to Bonnie
Ion and Francoise for their help with the bibliography. Many thanks go also to
Peter Renz who orchestrated the whole thing,.

Alain Connes
30 June 1994
Paris
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INTRODUCTION

The correspondence between geometric spaces and commutative algebras is
a familiar and basic idea of algebraic geometry. The purpose of this book is
to extend this correspondence to the noncommutative case in the framework
of real analysis. The theory, called noncommutative geometry, rests on two
essential points:

1. The existence of many natural spaces for which the classical set-the-
oretic tools of analysis, such as measure theory, topology, calculus, and met-
ric ideas lose their pertinence, but which correspond very naturally to a non-
commutative algebra. Such spaces arise both in mathematics and in quantum
physics and we shall discuss them in more detail below; examples include:

a) The space of Penrose tilings

b) The space of leaves of a foliation

¢) The space of irreducible unitary representations of a discrete group

d) The phase space in quantum mechanics

e) The Brillouin zone in the quantum Hall effect

f) Space-time.

Moreover, even for classical spaces, which correspond to commutative
algebras, the new point of view will give new tools and results, for instance for
the Julia sets of iteration theory.

2. The extension of the classical tools, such as measure theory, topology,
differential calculus and Riemannian geometry, to the noncommutative situa-
tion. This extension involves, of course, an algebraic reformulation of the above
tools, but passing from the commutative to the noncommutative case is never
straightforward. On the one hand, completely new phenomena arise in the
noncommutative case, such as the existence of a canonical time evolution for a
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2 INTRODUCTION

noncommutative measure space. On the other hand, the constraint of develop-
ing the theory in the noncommutative framework leads to a new point of view
and new tools even in the commutative case, such as cyclic cohomology and
the quantized differential calculus which, unlike the theory of distributions,
is perfectly adapted to products and gives meaning and uses expressions like
| £(Z)\dZ|P where Z is not differentiable (and p not necessarily an integer).

Let us now discuss in more detail the extension of the classical tools of
analysis to the noncommutative case.

A. Measure theory (Chapters I and V)

It has long been known to operator algebraists that the theory of von Neumann
algebras and weights constitutes a far reaching generalization of classical mea-
sure theory. Given a countably generated measure space X, the linear space
of square-integrable (classes of) measurable functions on X forms a Hilbert
space. It is one of the great virtues of the Lebesgue theory that every element
of the latter Hilbert space is represented by a measurable function, a fact which
easily implies the Radon-Nikodym theorem, for instance, There is, up to iso-
morphism, only one Hilbert space with a countable basis, and in the above
construction the original measure space is encoded by the representation (by
multiplication operators) of its algebra of bounded measurable functions. This
algebra turns out to be the prototype of a commutative von Neumann algebra,
which is dual to an (essentially unique) measure space X.

In general a construction of a Hilbert space with a countable basis pro-
vides one with specific automorphisms (unitary operators) of that space. The
algebra of operators in the Hilbert space which commute with these particular
automorphisms is a von Neumann algebra, and all von Neumann algebras are
obtained in that manner. The theory of not necessarily commutative von Neu-
mann algebras was initiated by Murray and von Neumann and is considerably
more difficult than the commutative case.

The center of a von Neumann algebra is a commutative von Neumann
algebra, and, as such, dual to an essentially unique measure space. The general
case thus decomposes over the center as a direct integral of so-called factors,
i.e. von Neumann algebras with trivial center.

In increasing degree of complexity the factors were initially classified by
Murray and von Neumann into three types, I, II, and III.

The type I factors and more generally the type I von Neumann algebras,
(i.e. direct integrals of type I factors) are isomorphic to commutants of com-
mutative von Neumann algebras. Thus, up to the notion of multiplicity they
correspond to classical measure theory.

The type II factors exhibit a completely new phenomenon, that of contin-
uous dimension. Thus, whereas a type I factor corresponds to the geometry of
lines, planes, ..., k-dimensional complex subspaces of a given Hilbert space,



A Measure theory (Chapters I and V) 3

the subspaces that belong to a type 1I factor are no longer classified by a di-
mension which is an integer but by a dimension which is a positive real number
and will span a continuum of values (an interval). Moreover, crucial properties
such as the equality

dim(E A F) + dim(E v F) = dim(E) + dim(F)

remain true in this continuous geometry (E A F is the intersection of the sub-
spaces and E v F the closure of the linear span of E and F).

The type III factors are those which remain after the type I and type II
cases have been considered. They appear at first sight to be singular and in-
tractable. Relying on Tomita's theory of modular Hilbert algebras and on the
earlier work of Powers, Araki, Woods and Krieger, I showed in my thesis that
type Il is subdivided into types Ill,, A € [0,1] and that a factor of type IIl,,
A # 1, can be reconstructed uniquely as a crossed product of a type II von Neu-
mann algebra by an automorphism contracting the trace. This result was then
extended by M. Takesaki to cover the IIl; case as well, using a one-parameter
group of automorphisms instead of a single automorphism.

These results thus reduce the understanding of type 1l factors to that of
type II factors and their automorphisms, a task which was completed in the
hyperfinite case and culminates in the complete classification of hyperfinite
von Neumann algebras presented briefly in Chapter I Section 3 and in great
detail in Chapter V.

The reduction from type III to type II has some resemblance to the reduc-
tion of arbitrary locally compact groups to unimodular ones by a semidirect
product construction. There is one essential difference, however, which is that
the range of the module, which is a closed subgroup of R* in the locally compact
group case, has to be replaced for type Ill, factors by an ergodic action of R*:
the flow of weights of the type III factor. This flow is an invariant of the factor
and can, by Krieger’'s theorem (Chapter V) be any ergodic flow, thus exhibiting
an intrinsic relation between type I factors and ergodic theory and lending
support to the ideas of G. Mackey on virtual subgroups. Indeed, in Mackey’s
terminology, a virtual subgroup of R} corresponds exactly to an ergodic action
of R%.

Since general von Neumann algebras have such an unexpected and pow-
erful structure theory it is natural to look for them in more common parts
of mathematics and to start using them as tools. After some earlier work by
Singer, Coburn, Douglas, and Schaeffer, and by Shubin (whose work is the first
application of type I techniques to the spectral theory of operators), a deci-
sive step in this direction was taken up by M.F. Atiyah and 1. M. Singer. They
showed that the type Il von Neumann algebra generated by the regular repre-
sentation of a discrete group (already considered by Murray and von Neumann)
provides, thanks to the continuous dimension, the necessary tool to measure
the multiplicity of the kernel of an invariant elliptic differential operator on
a Galois covering space. Moreover, they showed that the type II index on the



