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Preface

One of the most important tasks facing the chemist is the need to extract useful
information from numerical data. The requirement is increasing continuously as
instrumental and computational methods produce not only more and better data,
but the means to subject them to more detailed analysis. The general availability
of cheap and powerful computers therefore makes it highly dcsirable that the
chemist has some basic knowledge of the theory and practice of numerical
computation.

The purpose of this book is to give a practical introduction to numerical
methods at a level suitable for the undergraduate chemist. It therefore strésses
chemical applications and attempts to show the student how to formulate a chemi-
cal problem in mathematical terms and select a numerical method to solve it. The
book should also prove useful as am introduction to more powerful sources of
programs such as the Numerical Algorithms Group (NAG) library.

The text has three introductory chapters which cover problem formulation and
the treatment of computational and experimental errors. Chapters 4 to 8 discuss in
turn, non-inear equations, simultaneous linear equations, numerical integration, the
numerical solution of ordinary differential equations, and interpolation and
approximation. The emphasis on selected, mainly experimental, applications has led
to the omission of eigenvalue problems*.

The treatment of the chapters assumes a basic knowledge of algebra and calculus
but no previous knowledge of numerical methods. Each chapter contains several
worked examples and a wide range of problems varying in length and complexity.
The longer exercises are structured into, frequently independent, subproblems and

the many references given in the text and problems are designed to encourage

students to search the literature and cxtend the exercises for themselves. Naturally,
the problems have a numerical bias but numerical methods are no substitute for
poor analysis and due consideration is given to problem formulation and the mani-
pulation of equations. Detailed solutions and answers to the exercises are intended
to strengthen understanding and promote a critical approach leading to further
investigation. )

No attempt is made to teach computer programming and ideally the computa-
tional chemistry would be taught alongside or immediately following a course on

* See the article by Bauer, H. and Roth, K., The numeric solution of eigenvalue problems,
J. Chem. Educ., 57,423 (1980) and references contained therein.
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the elements of FORTRAN. However, this arrangement may be impractical, or
students may not take to the discipline of programming. The numerical methods
chapters cater for these eventualities by providing two types of exercise. The first
uses existing programs so that users with virtually no computing knowledge can
enter data and interpret the results numerically and chemically. The second type
assumes an elementary knowledge of FORTRAN and requires short programs to
be written arcund available subprograms. These latter exercises present an additional
challenge and the opportunity to develop programming skills but keep the emphasis
on chemical problem-solving by providing clear directions and hints on writing the
programs. The available software is described in the appropriate chapters and com-
plete listings are given in the appendices.

Many of the exercises were developed whilst I held a BP Fellowship at Keble
College, Oxford in 1976 and it is a pleasure to record my gratitude to the British
Petroleum Company and the Wardén and Fellows of Keble College for the facilities
made available to me. My thanks are also duc to Miss Patricia Lee and Mrs Angela
Sharkey for their invaluable comments on the mathematical presentation. The task
of removing errors has been greatly helped by the vigilance of my students and the
expert typing of Mrs Anita Lemmon. Special thanks are due to my colleague Mr
Stephen Broadbent for his ever-helpful comments and assistance in writing and
testing the software. Naturally any errors that remain in the text or programs are
my own responsibility and I shall be grateful to readers who bring them to my
attention.

Portsmouth

" September 1980 A.C. NORRIS



Notes of the Use of the Text

Units

SI Units ate used throughout the book but the atm, mmHg, and occasionally the
min, are retained for data originally published in these units.

Small Type Sections

Each of the chapters on numerical methods contains exercises that either require
data to be entered into existing programs, or FORTRAN programs to be written
around existing subroutines. To facilitate the use of these exercises, the Data Entry
and Subprogram Specification sections of these chapters are accordingly set in small
type to distinguish them from the main text.

Availability of Software

All the programs listed in the Appendices, together with test data, are available
either on magnetic or paper tape. Also available are tapes, listings, and results for
the 25 programming exercises described in sections 7 of Chapters 4-8. There is a
small handling charge and lecturers interested in using these materials in their
courses should write in the first instance to the author, Dr A. C. Norris, Department
of Chemistry, Portsmouth Polytechnic, Portsmouth, Hampshire, England.
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CHAPTER 1

Problem Formulation and Solution

1.1 INTRODUCTION

The chemist who wishes to solve a numerical problem must first decide its nature
and its complexity since these factors will determine the approach and equipment
needed to solve it. It must be stressed at the outset that little progress can be made
in solving any but the simplest problems without at least a basic knowledge of
algebra and calculus. Fortunately, this knowledge is not difficult to acquire and,
with a little experience, it is possible to formulate the problem and determine
whether pencil and paper, calculator or computer should be used for the solution.
When deciding upon the equipment, it is best to use the simplest possible. This is
not to suggest that the solution of say ten, simultaneous, linear equations in ten
unknowns should be attempted by hand. The rule suggests rather that a little
thought and scribbling can sometimes produce an answer more quickly, more
cheaply, and even more accurately than the corresponding computer solution.

Given that the problem is sufficiently involved or repetitive to warrant a com-
puter, the potential user is then faced with a number of additional questions:

(i) How do I formulate the problem for computer solution?
(ii) What methods are available to solve the problem in a reasonable time?
(iii) How do I obtain the best solution permitted by the data?
(iv) How do I know that this result has been obtained?
(v) Is it meaningful to correct an approximate result?
(vi) How can such a correction be applied?

The purpose of this book is to help the reader to answer these questions. The first
step is to recognize that the questions should be answered at the design stage before
any attempt is made to write a computer program. Certainly the computer will do
exactly what the program tells it to, but it is up to the programmer to express his
scientific knowledge in mathematical terms which can then be translated into an
effective program. Also, the computer is not the modern equivalent of the
philosopher’s stone and electronic wizardry cannot turn poor data into good
results. Furthermore, computers introduce error at almost every stage of a calcula-
tion and unless the user knows something about how susceptible his problem is to
this error, and how it can be controlled, then sooner or later he will find himself
accepting answers Which are quite untrue.

1



In the following chapters we hope to show that the above questions are not
nearly as daunting as they might seem. The remainder of this chapter is devoted to
general advice on formulating and solving numerical problems and writing efficient
computer programs. Exercises to demonstrate the points discussed are presented at
the end of the chapter,

1.2 FORMULATING THE PROBLEM AND DESIGNING A SOLUTION

Many scientists become fascinated by computer programming and expend a great
deal of energy devising programs which make efficient use of computer resources.

Although this effort is often justified, the successful computer solution is likely to ~

depend far less on program efficiency than on the correct formulation of the
problem and the choice of an appropriate method to solve it. Not surprisingly,
these latter tasks are determined largely by the nature of the problem and there are
no simple rules which can be applied to solve the problem uniquely. Success, as
. always, hinges on an appropriate blend of theory and experience. Some useful
guidelines can be given, however, and in this section we illustrate these with
examples to indicate the value of a little thought before rushing to {the computer.

1.2.1 Mathematical Expression apd Problem Type

A mathematical and hence a computational method can only operate on formulae,
sets of equations, inequalities, etc., and so it is necessary to present the scientific
problem in mathematical terms. The translation process is achieved by adopting a
suitable notation which preserves the chemical significance but reveals clearly the
nature of the mathematical problem. Only when the problem type has been identi-

fied is it possible to consider a method of solution.
To illustrate these points consider the determination of the proton concentra-

tion in an aqueous solution of a weakly ionized acid HA,
HA4 + HO=H;0" + 4~ (1.1)

If the system is assumed to behave ideally, the acid ionization constant K, is

defined b
R K, = [H,0"] [47]/[H4]

and rea;nangement of this expression yields the required equation for the proton
concentration:

[H:0%] =K, [HA]/[47]. 12
The chemist would probably interpret equation (1.2) as ‘The proton concentration
is the ratio of un-ionized acid and anion concentrations multiplied by the jonization
constant’; a statement which implies that the problem is easily solved by substitut-
ing numerical values for the terms on the right-hand side. That this is too simple a

view is readily seen by expressing the problem mathematically. If the total acid
concentration is C; and the proton concentration x, then

[HO']l=[4T]=x [HA]=C, - x

o



and equation (1.2) becomes
%= Ky(Cy — X (13)
which rearranges to give
x*+K,x ~K,Ca=0 (1.49)

showing that without further assumptions x, i.e. [Hy0'], must be cvaluated as the
root of a quadratic equation. A further difficulty is the need for some criterion to
select the correct root.

Now this example is far too trivial for the complications not to be realized at an
early stage. It does demonstrate, however, the need to reformulate the problem and
so to replace the chemical questions (e.g. what is the proton concentration?) by
mathematical ones (e.g. what is the appropriate root of the quadraticequation?).
Only when the mathematical objectives are clearly defined can attention be given to

the organization of the solution.
%

1.2.2 Well- and Poorly-formulated Problems

Broadly, a well-formulated problem is one which produces the correct solution with
minimum error. Any steps that can be taken to ensure these properties are clearly
worth considering. We can illustrate the first part of the definition by an example
from chemical kinetics. The consecutive first-order decomposition

k,  k,
A->B—>C
with rate constants k, and k, produces the relationship (see Exercise 4.7-4) A

k2=g(k2)=kl exp [(kz_kl).tmax] (1-5)

where f1,4 is the time at which the concentration of B achieves its maximum value.
If the values of %; and #,,,, are known then, in principle, an initial estimate of k,
can be inserted into the right-hand side of this non-linear equation and refined by
successive approximation. However, equation (1.5) has two roots for k, and the
theory® of iterative processes shows that the iteration can converge only to the root
at which the derivative

ldg (ko) dk,1 = 18" (k)| <1

Differentiating equation (1.5) demonstrates that this convergence condition is satis-
fied when k; < 1/tpax. If we know from additional evidence that k; > 1/, then
equation (1.5) is clearly poorly-formulated for the calculation of k,. The solution is
to take logarithms of equation (1.5), rearrange the result to give

ka=ky+ [In(k2/k1))/tmax (1.6)

and the problem is now well-formulated since a check on the convergence condition
shows that this equation will produce the required root.
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The effect of problem formulation on the accuracy of a solution is demonstrated
by the numerical treatment of the ordinary differential equation

dyfdx=y'=y —x

with the initial condition y =1 when x =0 [y(0)=1]. The analytical, i.e. exact,
solution is

y=x+1i

but if the problem is solved numerically and a small error is introduced which alters
the initial condition to y(0) = 1 + € then the solution is

y=eeX+x+1

and the exponential term eventually swamps the correct ‘linear’ solution. The diffi-
culty is caused by the poor choice of initial condition which produces an exponen-
tially increasing component as the solution progresses from x =0 to some value
x,,. If we can reformulate the problem with the initial condition specified at some
high value of x and proceed to x = 0 then the difficulty vanishes since the exponential
contribution is now decreasing. The ‘condition’ of a problem is frequently improved
by reformulation.

1.2.3 Transformation

The concept of a transform is familiar from the use of logarithms which turn a
multiplication or division into a simpler addition or subtraction. If a parameter of
interest occurs in an equation as a power then logarithmic transformation is
frequently used to produce a linear relationship from which the parameter is
obtained more readily. Numerous examples arise with kinetic and equilibrium
processes which involve an energy barrier. Thus, the saturated vapour pressure (4]
of a pure liquid is expressed as a function of temperature (T) by the equation '

P=A e AHRT

where AH is the enthalpy of vaporization and 4 and R are constants. The deter-
mination of AH is greatly simplified by taking logarithms to produce the more
familiar expression

InP=— AH/RT +InA.

AH is then estimated either from a linear plot of InP as a function of 1/T or by a
linear least-squares analysis with suitable weighting (see Chapter 8).

Logarithmic and other simple transforms®? are often sufficient to extract the
required information from the data but, in some cases, more complicated trans-
forms may be needed. For example, the Fourier integral transform* is now used for
the routine reduction of spectroscopic data® and the computer is playing an
essential role in the development of instrumental methods.



1.2.4 Analytical Simplification

The discussion in Section 1.2.1 indicates that when chemical equations are formu-
Jated mathematically, the resulting expressions may need further rearrangement
before they can be treated numerically. At the same time it may be possible to
facilitate the numerical solution by simplifying the equations algebraically. A
common instance is the use of integration by parts to produce recurrence relation-
ships for numerical definite integrals. Thus, the gamma function I'(n) which finds
application in areas such as unimolecular reaction theory® and the solution of dif-
ferential equations? is defined by?®

I‘(n)='Jv x""le™* dx n>0.
0

Integration by parts for I'(n + 1) yields

l‘(n+1)=f x?e ¥ dx = [—x" c"‘]: +nJ~ x" e dx,
0 o

that is,
I'(n+ ) =nl'(n)

so that a series of integrals with non-integer n, I'(n + n,r=0,1,2,..., can be
evaluated from this recurrence relationship and a single integration of T'(n). The
decrease in the number of calculations makes this type of simplification not only
faster but frequently more accurate than repeated numerical treatment.

1.2.5 Analytical Approximation

Analytical approximation refers to changes made to an equation to give a (usually
slightly) different but not equivalent relationship. The object of course is to
simplify the solution at the expense of an acceptable increase in (approximation)
error. Common examples are the assumptions that 1+z =1 whenz <1 and the
truncation of the exponential series.

An approximation frequently results from some assumption about the chemistry
and it should in any case never be made without considering its physical conse-
quences. For example, if the acid referred to in equation (1.1)is very weak then the
proton concentration x might be considered negligible compared with the acid
concentration Cy. In this case

C,—x=C, x/C.<1)
and equation (1.3) can be rewritten as
x = (K, C)V?

allowing x to be evaluated as a simple square root rather than one of the roots of
the quadratic equation (1.4). ’



Similarly, the linearization of an exponential term may be possible under limit-’
ing conditions. Thus, the Debye equation for the heat capacity at constant volume
of a monatomic solid is

Cy=OR/x%) fo'" [*x(e* — 1] dx

where R is the gas constant and xy, = 6p/T; O being the Debye temperature and T
the temperature at which Cy is to be evaluated. Generally, the integral is found
numerically but for sufficiently high temperatures

x<1 (T>6p)
and '
e¥=1+x

so that
e xdf(e* — )P =e*xt>x2
The integral is then readily evaluated to give
Cy=3R,

the classical limiting value of the quantum prediction.

Naturally, neither of the above exampies needs a computer to obtain the answer
but, when a computer is necessary, care should be taken to ensure that it does not
fntroduce any unsolicited approximations. For example, the integral 'o'f. the
Arrhenius fur<tion ’

T
f e—E/R T dr
0

involving the activation-energy £ is important in the non-isothermal decomposition
of solids®. On many mainframe computers, the smallest positive number just greater
than zero which the machine can store is about e™°. Hence if E/RT > 176, the
exponential will be sot to zero and the relative error may be large though the:
absolute value of the integral is very small. Most computers give no indication of
this underflow condition and it is advisable to know the computer’s limitations.

1.2.6 Data Inputand Output

The experimental conditions will determine the number and type of data available
for analysis and these factors together with the format in which the results are to be
presented may materially affect the formulation and solution of the problem. For
example, the fugacity coefficient y of a gas at a pressure P* is obtained by a
numerical integration of the relationship

p*
ny= j (C - 1)/P] dP

[



