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‘Preface to the fourth edition

’

In recent years, graph theory has established itself as an important mathematicai tool in
a wide variety of subjects, ranging from operational research and chemistry to genetics
and linguistics, and from eléctrical engineering and geography to sociology and archi-
tecture. At the same time it has also emerged as a worthwhile mathematical dxsc1p1me
in its own right.

In view of this, there is a need for an inexpensive introductory text on the subject,
suitable both for mathematicians taking courses in graph theory and also for non-
specialists wishing to learn the subject as quickly as possible. It is my hope that this
book goes some way towards filling this need. The only prerequisites to reading it are
a basic knowledge of elementary set theory and matrix theory, although a further
knowledge of abstract algebra is needed for more difficult exercises.

The contents of this book may be conveniently divided into four parts. The first of
these (Chapters 1-4) provides a basic foundation course, containing definitions and
examples of graphs, connectedness, Eulerian and Hamiltonian paths and cycles, and
trees. This is followed by two chapters (Chapters 5 and 6) on planarity and colouring,
with special reference to the four-colour theorem. The third part (Chapters 7 and 8)
deals with the theory of directed graphs and with transversal theory, with applications
to critical path analysis, Markov chains and network flows. The book ends with a chap-
ter on matroids (Chapter 9), which ties together material from the previous chapters
and introduces some recent developments. -

Throughout the book I have attempted to restrict the text to basic material, using
exermses as a means for introducing less important material. Of the 250 exercises,
some are routine examples designed to test understanding of the text, while others
will introduce you to new results and ideas. You should read each exercise,
whether or not you work through it in detail. Difficult exercises are indicated by an
asterisk.

1 have used the symbol // to indicate the end of a proof, and bold-face type is used
for definitions. The number of elements in a set S is denoted by IS, and the empty set
is denoted by &.

A substantial number of changes have been made in this edition. The text has been
revised throughout, and some terminology has been changed to fit in with current
usage. In addition, solutions are given for some of the exercises; these exercises are
indicated by the symbol S next to the exercise number. Several changes have arisen as



viii Preface to the fourth edition

a result of comments by a number of people, and I should like to take this opportunity
of thankirg them for their helpful remarks.

Finally, I wish to express my thanks to my former students, but for whom this book
would have been completed a year earlier, to Mr William Shakespeare and others for
their apt and witty comments at the beginning of each chapter, and most of all to my
wife Joy for many things that have nothing to do with graph theory.

RJ.W.
May 1995
The Open University



Contents

Preface to the fourth edition ‘ vii
Introduction .
1 What s a graph? 1
Definitions and examples
2 Definition 8
3 Examples 17
4 Three puzzles - 21
Paths and cycles
5 Connectivity 26
6 Eulerian graphs ' 31
7 Hamiltonian graphs 35
8 Some algorithms : 38
Trees .
9 Properties of trees 43
10 Counting trees 47
11 More applications 51
Planarity
" 12 Planar graphs
13 Euler’s formula 60
14 Graphs on other surfaces 70
15 Dual graphs 73
16 Infinite graphs 77
Colouring graphs
17 Colouring vertices 81
18 Bropoks’ theorem 86
19 Colouring maps : : 88
20 Colouring edges 92

21 Chromatic polynomials 96



vi Contents

7 Digraphs
22 Definitions
23 Eulerian digraphs and tournaments
24 Markov chains

8 Matching, marriage and Menger’s theorem
25 Hall’s ‘marriage’ theorem
26 Transversal theory
27 Applications of Hall’s theorem
28 Menger’s theorem
29 Network flows

9 Matroids
30 Introduction to matroids
31 Examples of matroids
32 Matroids and graphs
33 Matroids and transversals
Appendix
Bibliography
Solutions to selected exercises

Index of symbols

Index of definitions

Go forth, my little book! pursue thy way!
Go forth, and please the gentle and the good.
William Wordsworth

100
105
109

112
115
118
122
126

132
135
139
143

- 147

148

150

167

168



Chapter 1

Introduction

The last thing one discovers in
writing a book is what to put first.
Blaise Pascal

In this introductory chapter we provide an intuitive background to the material that we
present more formally in later chapters. Terms that appear here in bold-face type are to
be-thought of as descriptions rather than as definitions. Having met them here in an
informal setting, you should find them more familiar when you meet them later. So
read this chapter quickly, and then forget all about it!

1 Whatis a graph?

We begin by considering Figs. 1.1 and 1.2, which depict part of a road map and part of
an electrical network.

Fig. 1.1
P Q
e e
i e
R
i SI] s ¢
T S

Fig. 1.2 .
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Either of these situations can be represented diagrammatically by means of points
and lines, as in Fig. 1.3. The points P, Q, R, S and T are called vertices, the lines are
called edges, and the whole diagram is called a graph. Note that the intersection of
the lines PS and QT is not a vertex, since it does not correspond to a cross-roads or to
the meeting of two wires. The degree of a vertex is the number of edges with that ver-
tex as an end-point; it corresponds in Fig. 1.1 to the number of roads at an intersection.
For example, the degree of the vertex Q is 4.

P Q

Fig. 1.3

The graph in Fig. 1.3 can also represent other situations. For example, if P, O, R, S
and T represent football teams, then the existence of an edge might correspond to the
playing of a game between the teams at its end-points. Thus, in Fig. 1.3, team P has
played against teams Q, S and T, but not against team R. In this representation, the
degree of a vertex is the number of games played by the corresponding team.

Another way of depicting these situations is by the graph in Fig. 1.4. Here we have
removed the ‘crossing’ of the lines PS and QT by drawing the line PS outside the rect-
angle POST. The resulting graph still tells us whether there is a direct road from one
intersection to another, how the electrical network is wired up, and which football
teams have played which. The only information we have lost concerns ‘metrical’ prop-
erties, such as the length of a road and the straightness of a wire.

Thus, a graph is a representation of a set of points and of how they are joined up,
and any metrical properties are irrelevant. From this point of view, any graphs that
represent the same situation, such as those of Figs. 1.3 and 1.4, are regarded as the
same graph. -

Fig. 1.4

More generally, two graphs are the same if two vertices are joined by an edge in one
graph if and only if the corresponding vertices are joined by an edge in the other.
Another graph that is the same as the graphs in Figs. 1.3 and 1.4 is shown in Fig. 1.5.
Here all idea of space and distance has gone, although we can still tell at a glance
which points are joined by a road or a wire.
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Fig. 1.5

In the above graph there is at most one edge joining each pair of vertices. Suppose
now, that in Fig. 1.5 the roads joining Q and S, and S and T, have too much traffic to
carry. Then the situation is eased by building extra roads joining these points, and the
resulting diagram looks like Fig. 1.6. The edges joining Q and S, or S and 7, are called
muitiple edges. If, in addition, we need a car park at P, then we indicate this by draw-
ing an edge from P to itself, called a loop (see Fig. 1.7). In this book, a graph may
contain loops and multiple edges. Graphs with no loops or multiple edges, such as the
graph in Fig. 1.5, are called simple graphs.

Q
P R
S
Fig. 1.6
Q
P
R
S
Fig. 1.7

The study of directed graphs (or digraphs, as we abbreviate them) arises from
making the roads into one-way streets. An example of a digraph is given in Fig. 1.8, the
directions of the one-way streets being indicated by arrows. (In this example, there
would be chaos at 7, but that does not stop us from studying such situations!) We dis-
cuss digraphs in Chapter 7.

Much of graph theory involves ‘walks’ of various kinds. A walk is a ‘way of getting
from one vertex to another’, and consists of a sequence of edges, one following after
another. For example, in Fig 1.5P — Q0 - Risawalk of length 2, andP - S > Q —
T — S — R is a walk of length 5. A walk in which no vertex appears more than once is
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Fig. 1.8

called a path; for example, P - T — § — R is a path. A walk of the form Q0 S - T
— Q is called a cycle.

Much of Chapter 3 is devoted to walks with some spec1al property. In particular, we
discuss graphs containing walks that include every edge or every vertex exactly once,
ending at the initial vertex; such graphs are called Eulerian and Hamiltonian graphs,
respectively. For example, the graph in Figs 1.3-1.5 is Hamiltonian; a suitable walk is
P —> 0 —>R—S§—>T- P.ltis not Eulerian, since any walk that includes each edge
exactly once (suchasP > Q >R —>S—>T—>P -5 >0 —T)mustend at a ver-
tex different from the initial one.

Some graphs are in two or more parts. For example, consider the graph whose ver-
tices are the stations of the London Underground and the New York Subway, and
whose edges are the lines joining them. It is impossible to travel from Trafalgar Square
to Grand Central Station using only edges of this graph, but if we confine our attention
to the London Underground only, then we can travel from any station to any other. A
graph that is in one piece, so that any two vertices are connected by a path, is a con-
nected graph; a graph in more than one piece is a disconnected graph (see Fig. 1.9).
We discuss connectedness in Chapter 3.

(= Q T

S R V U

Fig. 1.9

Fig. 1.10
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We are sometimes interested in connected graphs with only one path between each
pair of vertices. Such graphs are called trees, generalizing the idea of a family tree,
and are considered in Chapter 4. As we shall see, a tree can be defined as a connected
graph containing no cycles (see Fig. 1.10).

Earlier we noted that Fig. 1.3 can be redrawn as in Figs 1.4 and 1.5 so as to avoid
crossings of edges. A graph that can be redrawn without crossings in this way is called
a planar graph. In Chapter 5 we give several criteria for planarity. Some of these
involve the properties of ‘subgraphs’ of the graph in question; others involve the funda-
mental notion of duality. : B

Planar graphs also play an important role in colouring problems. In our ‘road-map’
graph, let us suppose that Shell, Esso, BP, and Gulf wish to erect five garages between
them, and that for economic reasons no company wishes to erect two garages at neigh-
bouring corners. Then Shell can build at P, Esso can build at Q, BP can build at S, and
Gulf can build at 7, leaving either Shell or Gulf to build at R (see Fig. 1.11). However,
if Gulf backs out of the agreement, then the other three companies cannot erect the
garages in the specified manner.

@heiD

Shell
P Q
R
Shell
or Gulf
T 5

@uiD

Fig. 1.11

Fig. 1.12

We discuss such problems in Chapter 6, where we try to colour the vertices of a
simple graph with a given number of colours so that each edge of the graph joins ver-
tices of different colours. If the graph is planar, then we can always colour its vertices
in this way with only four colours — this is the celebrated four-colour theorem.
Another version of this theorem is that we can always colour the countries of any map
with four colours so that no two neighbouring countries share the same colour (see
Fig. 1.12). '

In Chapter 8 we investigate the celebrated marriage problem, which asks under
what conditions a collection of girls, each of whom knows several boys, can be married
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so that each girl marries a boy she knows. This problem can be expressed in the
language of ‘transversal theory’, and is related to problems of finding disjoint paths
connecting two given vertices in a graph or digraph.

Chapter 8 concludes with a discussion of network flows and transportation prob-
lems. Suppose that we have a transportation network such as in Fig. 1.13, in which P is
a factory, R is a market, and the edges of the graph are channels through which goods
can be sent. Each channel has a capacity, indicated by a number next to the edge, rep-
resenting the maximum amount that can pass through that channel. The problem is to
determine how much can be sent from the factory to the market.

Q

Fig. 1.13

We conclude with a chapter on matroids. This ties together the material of the pre-
vious chapters, while satisfying the maxim ‘be wise — generalize!” Matroid theory, the
study of sets with ‘independence structures’ defined on them, generalizes both linear
independence in vector spaces and some results on graphs and transversals from earlier
in the book. However, matroid theory is far from being ‘generalization for generaliza-
tion’s sake’. On the contrary, it gives us deeper insight into several graph problems, as
well as providing simple proofs of results on transversals that are awkward to prove by
more traditional methods. Matroids have played an important role in the development
of combinatorial ideas in recent years.

We hope that this introductory chapter has been useful in setting the scene and
describing some of the treats that lie ahead. We now embark upon a formal treatment
of the subject.

Exercises 1

1.15  Write down the number of vertices, the number of edges, and the degree of each vertex,
in:
(i) the graph in Fig. 1.3;
(ii) the tree in Fig. 1.14.

A B c
D E F
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1.2 Draw the graph representing the road system in Fig. 1.15, and write down the number of
vertices, the number of edges and the degree of each vertex.

1.3  Figure 1.16 represents the chemical molecules of methane (CH,) and propane (C;Hy).
(i) Regarding these diagrams as graphs, what can you say about the vertices repre-
senting carbon atoms (C) and hydrogen atoms (H)?
(ii) = There are two different chemical molecules with formula C H,,. Draw the graphs
corresponding to these molecules.

1 T
H—C—H H—C—C—C—H
| Lol
H H H H
methane propane
Fig. 1.16
John
r 1 g T 1
Joe Jean Jane Jill
Jenny Kenny Bill Ben
Fig. 1.17

1.4 Draw a graph corresponding to the family tree in Fig. 1.17.

1.5% Draw a graph with vertices A, . . ., M that shows the various routes one can take when
tracing the Hampton Court maze in Fig. 1.18.

Fig. 1.18

1.6° John likes Joan, Jean and Jane; Joe likes Jane and Joan; Jean and Joan like each other.
Draw a digraph illustrating these relationships between John, Joan, Jean, Jane and Joe.

L7 Snakes eat frogs and birds eat spiders; birds and spiders both eat insects; frogs eat snails,
spiders and insects. Draw a digraph representing this predatory behaviour.



Chapter 2

Definitions and examples

[ hate definitions!
Benjamin Disraeli -

In this chapter, we lay the foundations for a proper study of graph theory. Section 2 for-
malizes some of the basic definitions of Chapter 1 and Section 3 provides a variety of
examples. In Section 4 we show how graphs can be used to represent and solve three
problems from recreational mathematics. More substantial applications are deferred
until we have more machinery at our disposal (see Sections 8 and 11).

2 Definitions

A simple graph G consists of a non-empty finite set V(G) of elements called vertices
(or nodes), and a finite set £(G) of distinct unordered pairs of distinct elements of V(G)
called edges. We call V(G) the vertex set and E(G) the edge set of G. An edge {v, w}
is said to join the vertices v and w, and is usually abbreviated to vw. For example, Fig.
2.1 represents the simple graph G whose vertex set V(G) is {u, v, w, z}, and whose
edge set £(G) consists of the edges uv, uw, vw and wz.

u Z

Fig. 2.1

In any simple graph there is at most one edge joining a given pair of vertices.
However, many results that hold for simple graphs can be extended to more general
objects in which two vertices may have several edges joining them. In addition, we
may remove the restriction that an edge joins two distinct vertices, and allow loops —
edges joining a vertex to itself. The resulting object, in which loops and multiple edges
are allowed, is called a general graph — or, simply, a graph (see Fig. 2.2). Thus every
simple graph is a graph, but not every graph is a simple graph.
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Fig. 2.2

Thus, a graph G consists of a non-empty finite set V(G) of elements called ver-
tices, and a finite family E(G) of unordered pairs of (not necessarily distinct) elements
of V(G) called edges; the use of the word ‘family’ permits the existence of multiple
edgest. We call V(G) the vertex set and £(G) the edge family of G. An edge {v, w} is
said to join the vertices v and w, and is again abbreviated to vw. Thus in Fig. 2.2, V(G)
is the set {u, v, w, z} and E(G) consists of the edges uv, vv (twice), vw (three times), uw
(twice), and wz. Note that each loop vv joins the vertex v to itself. Although we some-
times have to restrict our attention to simple graphs, we shall prove our results for
general graphs whenever possible.

The language of graph theory is not standard — all authors have their own terminol-
ogy. Some use the term ‘graph’ for what we call a simple graph, or for a graph with
directed edges, or for a‘graph with infinitely many vertices or edges; we discuss
digraphs in Chapter 7 and infinite graphs in Section 16. Any such definition is per-
fectly valid, provided that it is used consistently. In this book, all graphs are finite and
undirected, with loops angd multiple edges allowed unless specifically excluded.

Isomorphism

Two graphs G, and G, are isomor phic if there is a one—one correspondence between
the vertices of G, and those of G, such that the number of edges joining any two
vertices of G, is equal to the number of edges joining the corresponding vertices of
G,. Thus the two graphs shown in Fig. 2.3 are isomorphic under the correspondence
uelLvermwen, x> p,y e q, z <> r. For many problems, the labels on the
vertices are unnecessary and we drop them. We then say that two ‘unlabelled graphs’
are isomorphic if we can assign labels so that the resulting ‘labelled graphs’ are

u v w / D

Fig. 2.3

t We use the word ‘family’ to mean a collection of elements, some of which may occur several
times; for example, {a, b, ¢} is a set, but (a, a, ¢, b, 4, ¢) is a family.



