s 3
1
%

X

#+ H oL B R o] BE

Be 3% ﬁﬂ

1 7 LB 2

-

il e N
W e

.
TS

Nt

-
3

SYSTEMS PROGRAMMING

John J.Donovan

Project MAC,
Massachusetts Institute of Technology

-

1 background

This book has two major objectives: to teach

procéaures for the design of software systems and

to provide a basis.for judgement in the design of
software, To facilitate our pask, we have taken
specif&c examplesifrom systems programs, We discuss
the design and imﬁfementation of -the major system
compdhents.
What is systéhs programming? You may visualize

a compdter as some sort of beast that obeys all

commandé. It has been said that computers are ba-—
sically people made out of mctal or, conversely,
people are computers made out of flesh and blobd;
However, once we get close to computers, we see

that they are basically machines that follow very

s specific and priditive instructions,

In the early days of computers, people commu-

1.

nicated with them by on and off‘switches denoting
primitive instructions. Soon people wanted to give
more complex instructions. For example, they wanted
to be able to say X=30Y; given that Y=10, what is

X? Present day computers cannot understand such 1an-

guage without the aid of systems programs, ~Systems

programs (e.go, compilers, loaders, macro procegsors,
operating systems) were developed to make computers
better adapted to the needs of their users, Pupther,
people wanted more assistance in the mechanies of
preparing their programs,

Compilers are systems programs that accept peo-
ple-like languages and translate then into machine
language. Loaders are systems programs that pre-~
pare machine language programs for execution., Macro
processors allow programmérs to usé abbreviati;ns,
Operating systems and file systems allow flexible
storing and retrieval of information (Pig, 1.1).

There are over 100,000 computers in ﬁse now in
virtually every application., The productivity "% i
each computer is heavily dependent upon‘the effect-
iveness, efficiency, and sophistication of-the Sy &=
tems programs.

In this chapter we introduce some terminology

. and outline machine structure and the basic tasks of

- an operating system,

Peéople
! Application
1 programming
l
{ Com- Assem~ | Macro
{ pilers| blers | proces-|
! ; | sS0rs
. |
! } : » Search-
i | Text | Debug- | ing
i Loaders ging ~and
£ editors sorting
j aids '
f
1/0 File |Sched-| Li- | Memory |- Device
uler '| bra=- \
programs 8y 8~ ries| manage-| management
tems ment

- o

1.1

S

" PIGURE 1.1

‘Poundations of systems-programming

MACHINE STRUCTURE

We begin by sketching the general hardware

-~

;ndrgan%§gtién of ‘a

computer system (Fig. 1.2).

3.

1/0 I/0 e
proces- proces-| @ @ CPU CPU|® @

sor | sor

‘ot

Card Teletype

’ : Print-
{ read/punc ‘ er
Disk
or drum

FIGURE 1.2 General hardware organization
of a computer systenm

ﬁemory is the device where information is storedé
Processors are thévdevices,that operate on this in-
formation. One may view information as being stored
in the form of ones and zeros., Each one or zero is

a separate binary digit called a bit, Bits are typ-|

ically grouped in units that are called words, char-
acters, or bytes. Memory locations are specified by |
addresses, where each address identifies a specific |

byte, word, or character, 4 : ; I

The contents of a word may'be interpreted as data

fr(values‘tolbe operated on) or instructions (operations:
g*to be performed)., A processor is a de#ice that per=
1<forms a:sequence of opératicns specified by instrﬁc—
3 tions in memory, A program (or procedure) is a se-
" guence of instructions,

‘ Memory may be thought of as mailboxes containing
grdﬁps of ones and zeros, Below we depict a series.
of memory logations whose addresses are 10,000Athrough

. 10,002,

Address Contents

40,000 0000 0000 0000 0001

10,001 0011 0C00 0000 0000
10,002 0000 0000 0000 0400

An IBM 1120 processor treating location 10,001
ﬂas an instruction would interpret its contents as a
“halt" instruction, Treating the same location as
numerical data, the processor would interpret its
centents as the binary number\0011 0000 00C0 0000
{ decimal 12,288). Thus instructions and data share
the same storage nedium,

Information n memory is coded into groups of

Se

he by paras. ol

bits that may be interpreted as characters, intrue-
tions, or numbers, A code is a set of rules for ine

terpreting groups of bite, e,gqg codes for represer-

tation of decimal digiis (BCD), for characters {

EBCDIC, or ASCII), or for instructions (specific pro-

cessor operation codes), We have depicted two types

" of processors: Input/Output{ I/0) processors and Cen-

tral Processing Unite {CPUs), The I/0O processors are
concerned with the transfer of data between memory
and peripheral devices such as disks, drums, printers,
and typewriters, The CPUs are concerned with manipu-
lations of data stored in memory., The I/0 processors
execute I/0 instructions that are stored in memory;
they are generally activated by a command from the
CPU, Typically, this consists of an "execute I/O"
instruction whose argument is the address of the
start of the I/0 program, The CPU interprets this
instruction and passes the argument td the I/0 pro-
cessor,

The I/0 instruction set may be entirely different
from that of the CPU and may be exeduted asynchronous~
ly (simultaneously) with CPU operation, Asynchronous

operation of I/0 channels and CPUs was one of the

6.

earliest formz of multiprocessing., Multiprocessing
means having mcre .than one processor operating on
the same memory simulteameously.

Since'imstfuctione9 like data, are stored in mem-

" ory and can be treated as data, by changing the bit

s

B configuration of an instruction -— adding a num-
. ber to it ~-———— we may change it to a different

. dmstruction. Procedures that modify themselves are

~mealled meure proceduresa Writing such procedures
;7is poor programmin° practice° Cther programmers
'find them difficult to read, and moreover they cannot
be sharedﬁby multiple processorso Each processor
executing an impure procedure modlfies its contents,
Anothef processor attempting to eiecute the same
'procedure may‘encounter different instructions or
datag Tﬁusgos;cr\, prooedures are not readily .
reusable. A pure procedure does not modify itself
To ensure that the instructions are the same each
time a program is used, pure procedures (re-entrant

code) are employed.

1,2 EVOLUTION 05 THE COMPONENTS OF A PROGRAMMING

SYSTEM
y

1.2.1 AAssemblers

Let us review ‘some gspects of the development of th
components of’a progr&mmlng system° P

At one time, the computer p”ogramher had at hib
dispos 1 a basic machlﬁe tha» 1nterpretnd throqgh
hardware, certain fundamental 1nbtruct10nso' He would
program this computer by writing a eeries of oﬁes
and zeros (machine language), place thenm iﬁto‘the
memory of the'machine, and press a button, Whereupon
the computer would start to interpret thémias instruCn
tions, | e

Programmers found it difficult to write or read

programs in machine language. In their quest for a
more convenient language they began to use mnemonic
(symbol) for each machine instrﬁction, which they
would Subsequently translate into machine languags,
Such a mnemonic machine language is now called an
assembly language, Programs known as assemblers
were written to automate the tranolatloq of assembly
language into machine language, The input to an ag-
sembler program is calied the source program; the
output is a machine lénguage translation (object

program) .,

kTS -

N 2e2 Loaders

Once the assembler produces an object program, that

pregram must -be placed into memory and executed,

»;t

It is th

e of the loader tc¢ agsure that object

progrems are placed 'ibh memory in sn.execuiableform,

Phe P coultd place-the object program
directly in memory and transfer oontrol to. it, there=-

by causing the machine language program to be exé
ecuted, However, this would wastec core . by leaving
the assze Tbler'in memory while the user's program

was being executed, - Alsgo fhe programmer would have
to retranslate his program with cach execution,

thus wasting translation time, To overcome fhe

nroblems of wasted transiation time and wasted mem~

ory, Ssystems programmers developed another component,

A loader is a prcgram that plaeces programs into
memory and prepares them for cxecution, In a sim-
ple loading scheme, the assembler ocutpuls the ma-~ .=

chine language translaticn of a program on a sec~ s o
ondary storage device and a loader is placed 'in

core, The loader p aces into memory the machine

.9.

PR e

%i
x

language version of the usSer’®s program o2nd trans-
fers eontrol to it. Since the loader program is

much 3maller than the 23sembler, this makes more

~.able to the uSer's progresm .

The realizftion that many uSers were writually
the same programz led to the developmeut of "ready-
made"” programs {packagss were writtsn by the com-
puter manufacturers or the.userawvAs the progran-
mer became more Sophisticated, he wanted to mix
and combine rea2dy-made programe with his own. In
response to this dexcnd, a facility was provided
whereby the user could write a moin program that
used Seversl other programs or Subroutines., A
subroutine is 2 body of computer instructions
designed to be used by other 'routines to accomplish:
a task. There are two iypes of subrcutines: closed
and open subroutines. An Gpen Subroutine or macro
definition is one whose code is inserted into the
main program (flow continues). Thus if the same
open Subroutine were ca2iled four times, i% would
appear in four different places in the calling
program. A closed subroutine can be stored outside

the main routine, and control transfers to the

o S

gubroutine. Associated with the closed subroutine
. are two tasks the main program must perform: tran-

-

rontrol and treonsfer of data,

o)
o

gfer
Initially, closed Subroutines had to be leaded
b into memory &t & specific sddress. For sx mpie,
if 2 user vished %o employ a 3quere root subrou-
tine, he would have to write hiz main program SO
that it would transfer to the location assigned
o the square root routine (SQRT). His program and
the éub.t ine would be 2ssemblad together. If 2
sacond user wished to use the Same subrou+1n he
a1s0 would assemble it along with his own pregram,
and the compiete machine language trapnsilation wouid
be 10&&90 intc memory. An sxsmpis of core allocation
under this inflexible loading scheme 1S depicted in
Figure 1.3, where core is depicted 23 a 1inear array
of locations with the progrem arees shaded. '

Note that program 1 has "holss" in core. Prog-am
2 overlays and thereby destroys part of the SQRT sub- ~

P”Og“ammer% wished to use subroutines that refer-

red to each other symboi 1cally and did not wan® to

be concerned with the a2ddress of parts of thelr

11

21 Y

"’
£

LB

FIGUQH - B 3 Ex mpie core allccation for
absolute loading

programs., Taey expucted the computer system to

ssign locations %o their subroutines and o

substitute addresses Tfor their symbolic references.
Systems progrzmmers noted that it would be more

efficient if subroutines could be translated into an

object form that the loader could "relocate" directly

hebind the user's program. The task of adjusbing

programs S0 they may be placed in arbitrary core

<
locations is called relecation, Relorcating loaders

perform four functions:

1. Allccate space in memory for the preograms
(allocetion

N

2. Resolve symbolic references between object
decks (linking)

3. Adjust all address dependent lozations ,such
as address constants, to correspond to fhe

allocatedvspaée (relccation)

4, Physically place the machine instructions

and data into memory (loading)

‘ The various types of loaders that we_will discuss
;{"compilemandwgo," absolute, relocating , direct-link-
ing, dynamic-loading, and dynamic-linking) differ
primarily in the manner in which these.four basic
functions are accomplished.

The period of execution of 2 uSer's program 1S
called execubion time. The period cf translating a
uSer'$~source program is called =zssembly cr compile
timo,.Load time refers to the period of loading and

preparing an obiect program for sxecution.

1.2.3, Macros

To rellieve programmers of the‘need to repeét identical

parts of thelr program,'Operating Syétems provide a
macro processing facility, which permits the

programmer to dafine on abbreviation for a part of

nis »rogram and to use the ébbreviation in his prog-

ram., The mACYro processor treats the identical.parts

13

of the progrem defined by the abbreviation as 2

m-cro definition end saves the definition. The

macro processor suvbstitutes the defif¥ition for all

ccourrences of the abbreviation (macro call) in the
program
In addition to helping programmers abbreviate
their programs, macrc facilibies have been usad
as general text nandlers and fol Sp3: alizing ope--
ting systéms +0 individual compubter installatio
In specislizing operating Systems (systems genera-
ticn), the entire operating system is written as a
series of macro definitions. To Specialize the
operating system, a Series of macro calls are wrii-
tén . These are processed by the macro processor by
bs tituting the eppropriste definitions, thereby

préducing all the programs for an operating system.

¥

2 2 4. Compilers
As the uSnr 'S problem3 became more categorized into
areas such as Sscientific, business, and stati cal

problems; Specializad languages (hign Xevel languages)

wcre de»vionod that allowed the uSer to express cer-
taln problems concisely and easily. These high level

languagesﬁ.—' ex~mples are FORTRAN,CO.ECL,ALGOL,and

Y

PL/I__ are processed by compilers and interpreters .

A compiler i3 a program that accepts a program writ-
ften in = high level langnage and produces an object
Aprbﬂf .. An interpreter is &8 progra n that appears
oo sxecute a Source program as if it were machine
language. The same name (FORTRAN, COROL,e®c,) i3

P often used to d991gn Le both 2 comiiler 8nd 1%S ass

f ciated "annuzgeo

Modern compillers mnust bm ab’ tc provide the

% -facilities that programmers sre now demand-

ing . The compiler muat furnish complex accessing

. methods for polnter variables and data structures

used in languages like PL/I, COROL, and RALGOL 68.

lModern compitiers mw3t interact ¢ ¢icoely with the oper—

system tC handie statements concernlng the

of a compuber (e.8. cOnditlonal

ting
. pardware interrupiS

statements in PL/I.)

1.2.5 Formal SystemS

A formal system is an wninterpretsd calculus. It

consists of an alphabet, a set of words called

axioms, and a finite set of relations called rules
of inference. Examples of formal Systesmz are: s2t

theory, boolean. algebra, Post systems,

Normal Form. rormal sSystemsS 2are becomlng lmportant

15

in the design, implementation, and study of prog-
ramming l2ngurg2s, Specifically , they can be

used to specify the syntax (form) end the semantics
(meaning) of programming languages. They have been
used in syntax-directed compiler verification, and

complexity studies of languages.

1.3. EVOLUTION OF OPERATING SYSTEMS

Just a few years ago a FORTRAN programmer would
approach the computer with his source deck in his
left hand and a green dzck of c¢srds thas would be 2

FORTRAN compiler in his right hand. He would:

1. Place the FORTRAN compiler (green deck) in

the cerd hepper &nd pro3s the load button. The
computer would load the FORTRAN compiler.

2, Place his source Jlanguage deck into the card
hopper. Te FORTRAN compiler would proceed

to translate it into 2 machine language deck,

which wes punched onto red cards,
3. Reach into the card library for a pink deck
- of cards marked"loader," and place them in

the card hopper. The computer would load the

loader into its memory,

4. Place his 'newly translated object deck in
the cerd aopper. The loader would load it

