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Preface

This book on complex algebraic curves is intended to be accessible to any
third year mathematics undergraduate who has attended courses on algebra,
topology and complex analysis. It is an expanded version of notes written
to accompany a lecture course given to third year undergraduates at Oxford.
It has usually been the case that a number of graduate students have also
attended the course, and the lecture notes have been extended somewhat for
the sake of others in their position. However this new material is not intended
to daunt undergraduates, who can safely ignore it. The original lecture course
consisted of Chapters 1 to 5 (except for some of §3.1 including the definition
of intersection multiplicities) and part of Chapter 6, although some of the
contents of these chapters (particularly the introductory material in Chapter
1) was covered rather briefly.

Each section of each chapter has been arranged as far as possible so that
the important ideas and results appear near the start and the more difficult
and technical proofs are left to the end. Thus there is no need to finish each
section before beginning the next; when the going gets tough the reader can
afford to skip to the start of the next section.

The main aim of the course was to show undergraduates in their final
year how the basic ideas of pure mathematics they had studied in previous
years could be brought together in one of the showpieces of mathematics. In
particular it was intended to provide those students not intending to continue
mathematics beyond a first degree with a final year course which could be
regarded as a culmination of their studies, rather than one consisting of the
development of more machinery which they would never have the opportu-
nity to use. As well as being one of the most beautiful areas of mathematics,
the study of complex algebraic curves is one in which it is not necessary to
develop new machinery before starting - the tools are already available from
basic algebra, topology and complex analysis. It was also hoped that the
course would give those students who might be tempted to continue math-
ematics an idea of the flavour, or rather the very varied and exciting array
of flavours, of algebraic geometry, illustrating the way it draws on all parts
of mathematics while avoiding as much as possible the elaborate and highly
developed technical foundations of the subject.

The contents of the book are as follows. Chapter 1 “can be omitted for
examination purposes” as the original lecture notes said. This chapter is sim-
ply intended to provide some motivation and historical background for the
study of complex algebraic curves, and to indicate a few of the numerous
reasons why they are of interest to mathematicians working in very different
areas. Chapter 2 lays the foundations with the technical definitions and basic
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results needed to start the subject. Chapter 3 studies algebraic questions
about complex algebraic curves, in particular the question of how two curves
meet each other. Chapter 4 investigates what complex algebraic curves look
like topologically. In Chapters 5 and 6 complex analysis is used to investi-
gate complex algebraic curves from a third point of view. Finally Chapter 7
looks at singular complex algebraic curves which are much more complicated
objects than nonsingular ones and are mostly ignored in the first six chap-
ters. The three appendices contain results from algebra, complex analysis
and topology which are included to make the book as self- contained as pos-
sible: they are not intended to be easily readable but simply to be available
for those who feel the need to consult them.

There are many excellent books available for those who wish to study
the subject further: see for example the books by Arbarello & al, Beardon,
Brieskorn and Knoérrer, Chern, Clemens, Coolidge, Farkas and Kra, Fulton,
Griffiths, Griffiths and Harris, Gunning, Hartshorne, Jones, Kendig, Morrow
and Kodaira, Mumford, Reid, Semple and Roth, Shafarevich, Springer, and
Walker listed in the bibliography. Many of these references I have used to
prepare the lecture course and accompanying notes on which this book was
based, as well as the book itself. Indeed, the only reason I had for writing
lecture notes and then this book was that each of the books listed either
assumes a good deal more background knowledge than undergraduates are
likely to have or else takes a very different approach to the subject.

Finally I would like to record my grateful thanks to Graeme Segal, for
first suggesting that an undergraduate lecture course on this subject would
be worthwhile, to all those students who attended the lecture course and the
graduate students who helped run the accompanying classes for their useful
comments, to David Tranah of the Cambridge University Press and Elmer
Rees for their encouragement and advice on turning the lecture notes into a
book, and to Mark Lenssen and Amit Badiani for their great help in producing
the final version.

Frances Kirwan
Balliol College, Oxford
August 1991



Contents

Introduction and background

1.1 A brief history of algebraiccurves.. . . . ... ... .. .. ..
1.2 Relationship with other parts of mathematics . .. ... ...
1.21 Numbertheory .. ... .. .. ... . .........
1.2.2 Singularities and the theory of knots . . .. ... ...
123 Complexanalysis . . . ..................
1.24 Abelianintegrals. . . . . .................
1.3 Real AlgebraicCurves . . ... .................
1.3.1 Hilbert’s Nullstellensatz .. ...............
1.3.2 Techniques for drawing real algebraic curves . . . . . .

1.3.3 Real algebraic curves inside complex algebraic curves .
1.3.4 Important examples of real algebraic curves . . .. ..

Foundations

2.1 Complex algebraic curvesinC? . . . ... ...........
2.2 Complex projective spaces . . . .. .. .... e e e e e
2.3 Complex projectivecurvesin Py . . . ... ... .. .. .. ..
2.4 Affine and projectivecurves . . .. ... ... ... .. ...,
25 ExXercises . . . . . . . i i ittt e e

Algebraic properties

3.1 Bézout’stheorem .. ... ... ... .. 0w,
3.2 Points of inflection and cubiccurves. . . ... ... .. .. ..
33 Exercises. . . . .. v v v v v v v e e e e e e e

Topological properties

4.1 The degree-genusformula . . ... ... ............
4.1.1 The first methodofproof . ...............
4.1.2 The second methodof proof . . . ... ... .. ....

4.2 Branchedcoversof Py . . . .. .. .. v et

4.3 Proof of the degree-genus formula . . . . .. ... ... .. ..

4.4 Exerqises ..............................



vi

CONTENTS

Riemann surfaces

5.1 The Weierstrass p-function . . . . . ... ... ... ......
5.2 Riemannsurfaces . . . . . ... .. ... ... ...,
53 Exercises.......... e e e e e e e e e e
Differentials on Riemann surfaces

6.1 Holomorphic differentials . . . . .. .. ... ..........
6.2 Abel'stheorem ............... ... ... .....
6.3 The Riemann-Roch theorem . . . . .. .. .. ... ......
6.4 Exercises. . . . . .. . . .. ... e e e
Singular curves

7.1 Resolution of singularities . .. .. .. .. ...........
7.2 Newton polygons and Puiseux expansions . . ... .. .. ..
7.3 The topology of singularcurves . . .. .. ... ........
T4 Exercises . . . . . . . . . . . . . e e
Algebra

Complex analysis

Topology.

C.1 Coveringprojections . . . .. ... ... ... .........
C.2 The genus is a topological invariant . . .. ... ........

.C.3 Sphereswithhandles . . . ... .................

111
111
124
138

143
143
152
159
177

185
185
203
213
222

227



Chapter 1

Introduction and background

A complex algebraic curve in C? is a subset C of C? = C x C of the form
C ={(z,y) € C*: P(z,y) = 0} (1.1)

where P{z,y) is a polynomial in two variables with complex coefficients. (See
§2.1 for the precise definition). Such objects are called curves by analogy with
real algebraic curves or “curved lines” which are subsets of R? of the form

{(z,y) € R*: P(z,y) = 0} (1.2)
where P(z,y) is now a polynomial with real coefficients.

Of course to each real algebraic curve there is associated a complex al-
gebraic curve defined by the same polynomial. Real algebraic curves were
studied long before complex numbers were recognised as acceptable math-
ematical objects, but once complex algebraic curves appeared on the scene
it quickly became clear that they have at once simpler and more interesting
properties than real algebraic curves. To get some idea why this should be,
consider the study of polynomial equations in one variable with real coeffi-
cients: it is easier to work with complex numbers, so that the polynomial
factorises completely, and then decide which roots are real than not to allow
the use of complex numbers at all.

In this book we shall study complex algebraic curves from three different
points of view: algebra, topology and complex analysis. An example of the
kind of algebraic question we shall ask is

“Do the polynomial equations
P(z,y)=0
and
Q(z,y) =0
defining two complex algebraic curves have any common solutions
(z,y) € C?, and if so, how many are there?”

1



2 CHAPTER 1. INTRODUCTION AND BACKGROUND

An answer to this question will be given in Chapter 3.

The relationship of the study of complex algebraic curves with complex
analysis arises when one attempts to make sense of “multi-valued holomorphic

functions” such as .
Z > 22

and
2 (234274 1)*.

One ends up looking at the corresponding complex algebraic curves, in these
cases
y? = 2
and
V=+zt+ 1.

Complex analysis will be important in Chapter 5 and Chapter 6 of this book.

We shall also investigate the topology (that is, roughly speaking, the
shape) of complex algebraic curves in Chapter 4 and §7.3. It is of course
not possible to sketch a complex algebraic curve in C? in the same way that
we can sketch real algebraic curves in R?, because C? has four real dimen-
sions. None the less, we can draw sketches of complex algebraic curves (with
some extra points added “at infinity”), which are accurate topological pictures
of the curves but which do not reflect the way they sit inside C2. For some
examples, see figure 1.1. Ii is important to stress the fact that these pictures
can only represent the complex curves as topological spaces, and not the way
they lie in C2. For example, the complex curve defined by zy = 0 is the
union of the two “complex lines” defined by z = 0 and y = 0 in C?, which
meet at the origin (0,0). Topologically when we add a point at infinity to
each complex line it becomes a sphere, and the complex curve becomes the
union of two spheres meeting at a point as in figure 1.2. This picture, though
topologically correct, represents the two complex lines as tangential to each
other at the point of intersection, and this is not the case in C2. We cannot
avoid this problem without making the complex lines look “singular” at the
origin as in figure 1.3, which again is not really the case.

1.1 A brief history of algebraic curves.

Real algebraic curves have been studied for more than two thousand years,
although it was not until the introduction of the systematic use of coordinates
into geometry in the seventeenth century that they could be described in the
form (1.2).
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Equation Real algebraic curve Complex algebraic curve
(with points “at infinity™’)

2 2
+f)?=1

uulx

x4+y4=1

Figure 1.1: Some algebraic curves
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Nl °°2

Figure 1.2: The complex curve zy =0

o0y ooq

Figure 1.3: Another view of the complex curve zy = 0
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The story starts with the Greeks, who had very sophisticated geometrical
methods but a relatively primitive understanding of algebra. To them a circle
was not defined by an equation

(z —a) +(y~ b’ =+

but was instead the locus of all points having equal distance r from a fixed
point P = (a,b). Similarly a parabola to the Greeks was the locus of all points
having equal distance from a given point P and a given line L, while an ellipse
(hyperbola) was the locus of all points for which the sum (difference) of the
distances from two given points P and @ had a fixed value.

Lines and circles can of course be drawn with a ruler and compasses, and
the Greeks devised more complicated mechanisms to construct parabolas,
ellipses and hyperbolas. With these they were able to solve some famous
problems such as “duplicating the cube”; in other words constructing a cube
whose volume is twice the volume of a given cube (this was called the Delian
problem. This comes down to constructing a line segment of length 2!/3 times
the length of a given unit segment. The Greeks realised that this could be
done by constructing the points of intersection of the parabolas

y? =2z

and

t=y.
They tried very hard to do this and other constructions (such as trisecting
an arbitrary angle and drawing regular polygons) using ruler and compasses
alone. They failed, and in fact it can be shown using Galois theory (see for
example [Stewart 73] pp.57-67) that these constructions are impossible with
ruler and compasses.

Besides lines and circles, ellipses, parabolas and hyperbolas the Greeks
knew constructions for many other curves, for example the epicyclic curves
used to describe the paths of planets before the discovery of Kepler’s laws.
(An epicyclic curve is the path of a point on a circle which rolls without
slipping on the exterior of a fixed circle: see figure 1.4). Greek mathematics
was almost forgotten in Western Europe for many centuries after the end of
the Roman Empire, but in the late Middle Ages and Renaissance period it
was gradually rediscovered through contact with Arab mathematicians. It
was during the Renaissance that new algebraic curves were discovered by
artists such as Leonardo da Vinci who were interested in drawing outlines of
three-dimensional shapes in perspective.

As well as reintroducing Greek mathematics the Arabs introduced to Eu-
rope a much more sophisticated understanding of algebra and a good algebraic
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Figure 1.4: An epicyclic curve

notation. It can be difficult for us to realise how important good notation is
in the solution of a mathematical problem. For example the simple argument

2 +3=5zx= (z—5/2)*=13/4= z = (5% /13)/2
becomes much harder to express and to follow using words alone.

By the end of the seventeenth century mathematicians were familiar with
the idea pioneered by Descartes and Fermat of describing a locus of points in
the plane by one or more equations in two variables z and y. The methods
of the differential calculus were gradually being understood and applied to
curves. It was known that many real algebraic curves turned up in problems
in applied mathematics (one example being the nephroid or kidney curve
which is seen when light is reflected from a mirror whose cross-section is part
of a circle).

Around 1700 Newton made a detailed study of cubic curves (that is, curves
defined by polynomials of degree three) and described seventy two different
cases. He investigated the singularities of a curve C defined by a polynomial
P(z,y), i.e. the points (z,y) € C satisfying

apr dP
5;(1,!/) =0= a—y(z,y)-

These are points where the curve does not look “smooth”, such as the origin
in the cubic curves defined by y? = 23 + z? and y? = 23 (cf. figure 1.1). We
shall investigate the singularities of curves in greater detail in Chapter 7.

Once the use of complex numbers was understood in the nineteenth cen-
tury it was realised that very often it is easier and more profitable to study
the complex solutions to a polynomial equation P(z,y) = 0 instead of just
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the real solutions. For example, if we allow complex projective changes of
coordinates

(z,9) ax+by+c dz+ey+f)
g4 hz +jy+k hz +jy+k

where
a b ¢

de f

h j k
is a nonsingular matrix (see Chapter 2 for more details), then many of New-
ton’s seventy two different cubics become equivalent to one another. In fact
any complex curve defined by an irreducible cubic polynomial can be put into
one of the forms

y* = z(z—-1)(z—A) with A #0,1 (nonsingular cubic)
v} = ¥z +1) (nodal cubic)
y? = 2° (cuspidal cubic)

(see corollary 3.34 and exercise 3.9).

Another example of the “better” behaviour of complex curves than real
ones is the fact that a real algebraic curve can be so degenerate it doesn’t
look like a curve at all. For example, the subset

{(z,y) eR?: 22 4+ y* =0}
of R? is the single point (0,0) and
{(z,y) e R?: z* + y? = -1}

is the empty set. But if P(z,y) is any nonconstant polynomial with complex
coefficients then the subset of the complez space C? given by

{(z,y) € C*: P(z,y) = 0}
is nonempty and “has complex dimension one” in a reasonable sense.

In the nineteenth century it was realised that if suitable “points at infin-
ity” are added to a complex algebraic curve it becomes a compact topological
space, just as the Riemann sphere is made by adding an extra point oo to C.
Moreover one can make sense of the concepts of holomorphic and meromor-
phic functions on this topological space, and much of the theory of complex
analysis on C can be applied. This leads to the theory of Riemann surfaces,

1There is an unfortunate inconsistency of terminology in the theory of complex algebraic
curves and Riemann surfaces. A complex algebraic curve is called a curve because its
complez dimension is one, but its real dimension is two s0 it can also be called a surface.
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called after Bernhard Riemann (1826-1866). Riemann was extremely influen-
tial in developing the idea that geometry should deal not only with ordinary
Euclidean space but also with much more general and abstract spaces.

At the same time as Riemann and his followers were investigating complex
algebraic curves using complex analysis and topology, other mathematicians
began to use purely algebraic methods to obtain the same results. In 1882
Dedekind and Weber showed that much-ef the theory of algebraic curves
remained valid when the field of complex numbers was replaced by another
(preferably algebraically closed) field K. Instead of studying the curve C
defined by an irreducible polynomial P(z,y) directly, they studied the “field
of rational functions on C” which consists of all functions f : C — K U {00}
of the form

f(z,y) = Qz,y)/ R(z,y)
where Q(z,y) and R(z,y) are polynomials with coefficients in K such that
R(z,y) is not divisible by P(z,y) (i.e. such that R(z,y) does not vanish
identically on C).

It is often useful to study curves defined over fields other than the fields
of real and complex numbers. For example number theorists interested in the
integer solutions to a diophantine equation

P(z,y) =0,

where P(z,y) is a polynomial with integer coefficients, often first regard the
equation as a congruence modulo a prime number p. Such a congruence can
be thought of as defining an algebraic curve over the finite field

F,=7/pZ
consisting of the integers modulo p, or over its algebraic closure.

By the end of the nineteenth century mathematicians had begun to make
progress in studying the solutions of systems of more than one polynomial
equation in more than two variables. During the twentieth century many more
ideas and results have been developed in this area of mathematics (known as
algebraic geometry). Algebraic curves and surfaces are now reasonably well
understood, but the theory of algebraic varieties of dimension greater than
two remains very incomplete. (An algebraic variety is, roughly speaking,
the set of solutions to finitely many polynomial equations in finitely many
variables over a field K).

The study of algebraic curves and Riemann surfaces, involving as it does a
rich interplay between algebra, analysis, topology and geometry, with appli-
cations in many different areas of mathematics, has been the subject of active



