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Preface

This is a book about Monte Carlo methods from the perspective of financial
engineering. Monte Carlo simulation has become an essential tool in the pric-
ing of derivative securities and in risk management; these applications have,
in turn, stimulated research into new Monte Carlo techniques and renewed
interest in some old techniques. This is also a book about financial engineer-
ing from the perspective of Monte Carlo methods. One of the best ways to
develop an understanding of a model of, say, the term structure of interest
rates is to implement a simulation of the model; and finding ways to improve
the efficiency of a simulation motivates a deeper investigation into properties
of a model.

My intended audience is a mix of graduate students in financial engi-
neering, researchers interested in the application of Monte Carlo methods in
finance, and practitioners implementing models in industry. This book has
grown out of lecture notes I have used over several years at Columbia, for
a semester at Princeton, and for a short course at Aarhus University. These
classes have been attended by masters and doctoral students in engineering,
the mathematical and physical sciences, and finance. The selection of topics
has also been influenced by my experiences in developing and delivering pro-
fessional training courses with Mark Broadie, often in collaboration with Leif
Andersen and Phelim Boyle. The opportunity to discuss the use of Monte
Carlo methods in the derivatives industry with practitioners and colleagues
has helped shaped my thinking about the methods and their application.

Students and practitioners come to the area of financial engineering from
diverse academic fields and with widely ranging levels of training in mathe-
matics, statistics, finance, and computing. This presents a challenge in set-
ting the appropriate level for discourse. The most important prerequisite for
reading this book is familiarity with the mathematical tools routinely used
to specify and analyze continuous-time models in finance. Prior exposure to
the basic principles of option pricing is useful but less essential. The tools
of mathematical finance include It6 calculus, stochastic differential equations,
and martingales. Perhaps the most advanced idea used in many places in
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this book is the concept of a change of measure. This idea is so central both
to derivatives pricing and to Monte Carlo methods that there is simply no
avoiding it. The prerequisites to understanding the statement of the Girsanov
theorem should suffice for reading this book.

Whereas the language of mathematical finance is essential to our topic, its
technical subtleties are less so for purposes of computational work. My use of
mathematical tools is often informal: I may assume that a local martingale
is a martingale or that a stochastic differential equation has a solution, for
example, without calling attention to these assumptions. Where convenient,
I take derivatives without first assuming differentiability and I take expecta-
tions without verifying integrability. My intent is to focus on the issues most
important to Monte Carlo methods and to avoid diverting the discussion to
spell out technical conditions. Where these conditions are not evident and
where they are essential to understanding the scope of a technique, 1 discuss
them explicitly. In addition, an appendix gives precise statements of the most
important tools from stochastic calculus.

This book divides roughly into three parts. The first part, Chapters 1-3,
develops fundamentals of Monte Carlo methods. Chapter 1 summarizes the
theoretical foundations of derivatives pricing and Monte Carlo. It explains
the principles by which a pricing problem can be formulated as an integra-
tion problem to which Monte Carlo is then applicable. Chapter 2 discusses
random number generation and methods for sampling from nonuniform dis-
tributions, tools fundamental to every application of Monte Carlo. Chapter 3
provides an overview of some of the most important models used in financial
engineering and discusses their implementation by simulation. I have included
more discussion of the models in Chapter 3 and the financial underpinnings
in Chapter 1 than is strictly necessary to run a simulation. Students often
come to a course in Monte Carlo with limited exposure to this material, and
the implementation of a simulation becomes more meaningful if accompanied
by an understanding of a model and its context. Moreover, it is precisely in
model details that many of the most interesting simulation issues arise.

If the first three chapters deal with running a simulation, the next three
deal with ways of running it better. Chapter 4 presents methods for increas-
ing precision by reducing the variance of Monte Carlo estimates. Chapter 5
discusses the application of deterministic quasi-Monte Carlo methods for nu-
merical integration. Chapter 6 addresses the problem of discretization error
that results from simulating discrete-time approximations to continuous-time
models.

The last three chapters address topics specific to the application of Monte
Carlo methods in finance. Chapter 7 covers methods for estimating price sen-
sitivities or “Greeks.” Chapter 8 deals with the pricing of American options,
which entails solving an optimal stopping problem within a simulation. Chap-
ter 9 is an introduction to the use of Monte Carlo methods in risk management.
It discusses the measurement of market risk and credit risk in financial port-
folios. The models and methods of this final chapter are rather different from
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those in the other chapters, which deal primarily with the pricing of derivative
securities.

Several people have influenced this book in various ways and it is my
pleasure to express my thanks to them here. I owe a particular debt to my
frequent collaborators and co-authors Mark Broadie, Phil Heidelberger, and
Perwez Shahabuddin. Working with them has influenced my thinking as well
as the book’s contents. With Mark Broadie I have had several occasions to
collaborate on teaching as well as research, and I have benefited from our many
discussions on most of the topics in this book. Mark, Phil Heidelberger, Steve
Kou, Pierre L’Ecuyer, Barry Nelson, Art Owen, Philip Protter, and Jeremy
Staum each commented on one or more draft chapters; I thank them for
their comments and apologize for the many good suggestions I was unable to
incorporate fully. I have also benefited from working with current and former
Columbia students Jingyi Li, Nicolas Merener, Jeremy Staum, Hui Wang, Bin
Yu, and Xiaoliang Zhao on some of the topics in this book. Several classes
of students helped uncover errors in the lecture notes from which this book
evolved.

Paul Glasserman
New York, 2003
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Foundations

This chapter’s two parts develop key ideas from two fields, the intersection of
which is the topic of this book. Section 1.1 develops principles underlying the
use and analysis of Monte Carlo methods. It begins with a general descrip-
tion and simple examples of Monte Carlo, and then develops a framework for
measuring the efficiency of Monte Carlo estimators. Section 1.2 reviews con-
cepts from the theory of derivatives pricing, including pricing by replication,
the absence of arbitrage, risk-neutral probabilities, and market completeness.
The most important idea for our purposes is the representation of derivative
prices as expectations, because this representation underlies the application
of Monte Carlo.

1.1 Principles of Monte Carlo
1.1.1 Introduction

Monte Carlo methods are based on the analogy between probability and vol-
ume. The mathematics of measure formalizes the intuitive notion of probabil-
ity, associating an event with a set of outcomes and defining the probability of
the event to be its volume or measure relative to that of a universe of possible
outcomes. Monte Carlo uses this identity in reverse, calculating the volume
of a set by interpreting the volume as a probability. In the simplest case, this
means sampling randomly from a universe of possible outcomes and taking
the fraction of random draws that fall in a given set as an estimate of the set’s
volume. The law of large numbers ensures that this estimate converges to the
correct value as the number of draws increases. The central limit theorem
provides information about the likely magnitude of the error in the estimate
after a finite number of draws.

A small step takes us from volumes to integrals. Consider, for example,
the problem of estimating the integral of a function f over the unit interval.
We may represent the integral
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a:/olf(x)dm

as an expectation E[f(U)], with U uniformly distributed between 0 and 1.
Suppose we have a mechanism for drawing points Uj, U, ... independently
and uniformly from [0,1]. Evaluating the function f at n of these random
points and averaging the results produces the Monte Carlo estimate

.1
n = = Z f (Uz)
n 4
=1
If f is indeed integrable over [0, 1] then, by the strong law of large numbers,

&n, — a with probability 1 as n — .

If f is in fact square integrable and we set

ot = f (f(x) - a)? da,

then the error &, — « in the Monte Carlo estimate is approximately normally
distributed with mean 0 and standard deviation o//n, the quality of this
approximation improving with increasing n. The parameter oy would typically
be unknown in a setting in which a is unknown, but it can be estimated using
the sample standard deviation

7

1 .
s5= | =7 2 (Vi) — )2
i=1
Thus, from the function values f(U;),..., f(U,) we obtain not only an esti-

mate of the integral o but also a measure of the error in this estimate.

The form of the standard error os//n is a central feature of the Monte
Carlo method. Cutting this error in half requires increasing the number of
points by a factor of four; adding one decimal place of precision requires
100 times as many points. These are tangible expressions of the square-root
convergence rate implied by the \/n in the denominator of the standard error.
In contrast, the error in the simple trapezoidal rule

f_(%_i_ Z f@i/n)

is O(n=2), at least for twice continuously differentiable f. Monte Carlo is
generally not a competitive method for calculating one-dimensional integrals.

The value of Monte Carlo as a computational tool lies in the fact that its
O(n~1/2) convergence rate is not restricted to integrals over the unit interval.
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Indeed, the steps outlined above extend to estimating an integral over [0, 1]¢
(and even R?) for all dimensions d. Of course, when we change dimensions we
change f and when we change f we change oy, but the standard error will still
have the form of//n for a Monte Carlo estimate based on n draws from the
domain [0, 1]¢. In particular, the O(n~1/2) convergence rate holds for all d. In
contrast, the error in a product trapezoidal rule in d dimensions is O(n=2/9) for
twice continuously differentiable integrands; this degradation in convergence
rate with increasing dimension is characteristic of all deterministic integration
methods. Thus, Monte Carlo methods are attractive in evaluating integrals in
high dimensions.

What does this have to do with financial engineering? A fundamental im-
plication of asset pricing theory is that under certain circumstances (reviewed
in Section 1.2.1), the price of a derivative security can be usefully represented
as an expected value. Valuing derivatives thus reduces to computing expecta-
tions. In many cases, if we were to write the relevant expectation as an integral,
we would find that its dimension is large or even infinite. This is precisely the
sort of setting in which Monte Carlo methods become attractive.

Valuing a derivative security by Monte Carlo typically involves simulating
paths of stochastic processes used to describe the evolution of underlying
asset prices, interest rates, model parameters, and other factors relevant to
the security in question. Rather than simply drawing points randomly from
[0,1] or [0,1]¢, we seek to sample from a space of paths. Depending on how
the problem and model are formulated, the dimension of the relevant space
may be large or even infinite. The dimension will ordinarily be at least as large
as the number of time steps in the simulation, and this could easily be large
enough to make the square-root convergence rate for Monte Carlo competitive
with alternative methods.

For the most part, there is nothing we can do to overcome the rather slow
rate of convergence characteristic of Monte Carlo. (The quasi-Monte Carlo
methods discussed in Chapter 5 are an exception — under appropriate con-
ditions they provide a faster convergence rate.) We can, however, look for
superior sampling methods that reduce the implicit constant in the conver-
gence rate. Much of this book is devoted to examples and general principles
for doing this.

The rest of this section further develops some essential ideas underly-
ing Monte Carlo methods and their application to financial engineering. Sec-
tion 1.1.2 illustrates the use of Monte Carlo with two simple types of option
contracts. Section 1.1.3 develops a framework for evaluating the efficiency of
simulation estimators.

1.1.2 First Examples

In discussing general principles of Monte Carlo, it is useful to have some simple
specific examples to which to refer. As a first illustration of a Monte Carlo
method, we consider the calculation of the expected present value of the payoff
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of a call option on a stock. We do not yet refer to this as the option price; the
connection between a price and an expected discounted payoff is developed in
Section 1.2.1.

Let S(t) denote the price of the stock at time ¢. Consider a call option
granting the holder the right to buy the stock at a fixed price K at a fixed
time T in the future; the current time is £ = 0. If at time T the stock price
S(T) exceeds the strike price K, the holder exercises the option for a profit
of S(T) — K if, on the other hand, S(T') < K, the option expires worthless.
(This is a European option, meaning that it can be exercised only at the fixed
date T'; an American option allows the holder to choose the time of exercise.)
The payoff to the option holder at time 7 is thus

(S(T) — K)* = max{0,S(T) —~ K}.

To get the present value of this payoff we multiply by a discount factor e "7,
with r a continuously compounded interest rate. We denote the expected
present value by E[e™"T(S(T) — K)*].

For this expectation to be meaningful, we need to specify the distribution
of the random variable S(T), the terminal stock price. In fact, rather than
simply specifying the distribution at a fixed time, we introduce a model for the
dynamics of the stock price. The Black-Scholes model describes the evolution
of the stock price through the stochastic differential equation (SDE)

d—g—(%)— =rdt+odW(t), (1.1)
with W a standard Brownian motion. (For a brief review of stochastic cal-
culus, see Appendix B.) This equation may be interpreted as modeling the
percentage changes dS/S in the stock price as the increments of a Brownian
motion. The parameter ¢ is the volatility of the stock price and the coefficient
on dt in (1.1) is the mean rate of return. In taking the rate of return to be
the same as the interest rate r, we are implicitly describing the risk-neutral
dynamics of the stock price, an idea reviewed in Section 1.2.1.

The solution of the stochastic differential equation (1.1) is

S(T) = S(0)exp ([r — 30°|T + oW(T)). (1.2)

As S(0) is the current price of the stock, we may assume it is known. The
random variable W(T') is normally distributed with mean 0 and variance T,
this is also the distribution of vT'Z if Z is a standard normal random variable
(mean 0, variance 1). We may therefore represent the terminal stock price as

S(T) = S(0) exp ([r ~ 1o+ aﬁz) . (1.3)

The logarithm of the stock price is thus normally distributed, and the stock
price itself has a lognormal distribution.
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The expectation E[e™"7(S(T) — K)*] is an integral with respect to the
lognormal density of S(T). This integral can be evaluated in terms of the
standard normal cumulative distribution function ® as BS(S(0),0,T,r, K)
with

BS(S, 0, T,r, K) =

log(S/K) + (r + 202)T . log(S/K) + (r — Lo®)T
S<I>( g 2 )—e TK@( o 2 ).(1.4)

This is the Black-Scholes [50] formula for a call option.

In light of the availability of this formula, there is no need to use Monte
Carlo to compute E[e "7 (§(T") — K)*]. Moreover, we noted earlier that Monte
Carlo is not a competitive method for computing one-dimensional integrals.
Nevertheless, we now use this example to illustrate the key steps in Monte
Carlo. From (1.3) we see that to draw samples of the terminal stock price S(T')
it suffices to have a mechanism for drawing samples from the standard normal
distribution. Methods for doing this are discussed in Section 2.3; for now we
simply assume the ability to produce a sequence Z,Z,,... of independent
standard normal random variables. Given a mechanism for generating the Z;,
we can estimate E[e™"T(S(T) — K)*] using the following algorithm:

fori=1,...,n
generate Z;

set S;(T) = S(0) exp ([7- — %0'2]T+0'\/Tzi)
set C; = e "T(S(T) - K)*
set Cp, = (C1 +---+Cy)/n

For any n > 1, the estimator C,, is unbiased, in the sense that its expec-
tation is the target quantity:

E[Cn] = C =E[e~"T(S(T) — K)™].
The estimator is strongly consistent, meaning that as n — oo,
C, —» C with probability 1.

For finite but at least moderately large n, we can supplement the point esti-
mate C,, with a confidence interval. Let

1
n—1

S¢ =

i(ci ~ Cp)? (1.5)
i=1

denote the sample standard deviation of C1, ..., C, and let z5 denote the 1 —§
quantile of the standard normal distribution (i.e., ®(z5) = 1 — §). Then
~ SC

Cn:tz(;/zﬁ (16)
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is an asymptotically (as n — oo) valid 1 — § confidence interval for C. (For
a 95% confidence interval, § = .05 and zs5/2 ~ 1.96.) Alternatively, because
the standard deviation is estimated rather than known, we may prefer to
replace z5/ with the corresponding quantile from the ¢ distribution with n—1
degrees of freedom, which results in a slightly wider interval. In either case,
the probability that the interval covers C approaches 1 — 4 as n — oo. (These
ideas are reviewed in Appendix A.)

The problem of estimating E[e "7 (S(T") — K)*] by Monte Carlo is simple
enough to be illustrated in a spreadsheet. Commercial spreadsheet software
typically includes a method for sampling from the normal distribution and
the mathematical functions needed to transform normal samples to terminal
stock prices and then to discounted option payoffs. Figure 1.1 gives a schematic
illustration. The Z; are samples from the normal distribution; the comments
in the spreadsheet illustrate the formulas used to transform these to arrive
at the estimate C,,. The spreadsheet layout in Figure 1.1 makes the method
transparent but has the drawback that it requires storing all n replication in
n rows of cells. It is usually possible to use additional spreadsheet commands
to recalculate cell values n times without storing intermediate values.

Replication Normals Stock Price | Option Payoff )
1 Z1 S C1
2 Z2 S 2 ! c2
| .3 Z3 S_3 \ _C3 ;
L 4 Z.4 S 4 = * () SEADYE * *7 1
5 s =2 MO) exp((r-0.5* 0" 2)* T-+o*sqrt(T)*Z_1) F
| 6 286 S 6 [ol:]
7 27 S 7 c_7 T
[ 8 Z8 s8 C 8 lCd8=exp(-rT)"‘max(0,S_8-K)]—
9 z9 S K]
10 Z 10 S_10 C_10 _ |
11 Z 11 S 11 cC M
n Zn S n Cn o
C, = AVERAGE(C_1.....C_n)
s_C=STDEV(C_1,....C_n)

Fig. 1.1. A spreadsheet for estimating the expected present value of the payoff of
a call option.

This simple example illustrates a general feature of Monte Carlo methods
for valuing derivatives, which is that the simulation is built up in layers: each
of the transformations

Z; — Si(T) — C;

exemplifies s typical layer. The first transformation constructs a path of under-
lying assets from random variables with simpler distributions and the second
calculates a discounted payoff from each path. In fact, we often have additional



