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IMPORTANT SPACETIMES (geometrized units)

Flat Spacetime
Cartesian Coordinates
ds? = —dr? + dx? + dy? + d2* = nepdx®dx?
Spatial Spherical Polar Coordinates
ds® = —dt?* + dr? + r2d6? + r? sin® 0d¢?

Static, Weak Field Metric

dst = —(1 +2® (N dr? + (1 — 20 dx? +dy? +dzd), (@() <« 1).

Schwarzschild Geometry

Schwarzschild Coordinates
2 -1
ds? = — (1 - —M) dr* + (1 - Z—M) dr? + r’(d6? + sin’ 0d¢?)
r r
Eddington-Finkelstein Coordinates
2 2M 2 20102 | 32 p 702
ds® = — 1—7 dv” + 2dvdr + r°(d6“ + sin” 6d¢*)

Kruskal-Szekeres Coordinates

32M° _om

r

ds? = (—-de + a’Uz) +r2(d6? + sin® 0d¢?)

Kerr Geometry

2
dods + % dr? + ptde?

in2
ds2=—(1—2Mr) dt2_4Mar sin“ 6

p? p?
2M ra? sin? 8
+ (r2 +a* + —rp—z—) sin20d¢2,

where

a=J/M, p25r2+a2c0529, A=r?—2Mr+a®



Linearized Plane Gravitational Wave

ds® = —dt* + dx? + dy* + dz® + hopdx®dx?
where (rows and columns in #, x, y, z order)

0 0 0
10 40— fx(t—2)
hap.D=1g ft—2 —fitt-2
0 0 0

=== -]

for a wave propagating in the z-direction.

Friedman—Robertson-Walker Cosmological Models

] |

i sin? x closed
ds? = —dt* +a®(@) |dy® + { x? (d6? + sin®6d¢?) | , flat

| sinh? x open

[ ar? k = +1, closed
ds? = —di® +d*() > +r(do? + sin’ 0d¢2)] , | k=0, flat

_l—kr k= —1, open

THE GEODESIC EQUATION

e Lagrangian for the Geodesic Equation of a test particle

dx® dx® dxP 172
(85)- ot )

where ¢ is an arbitrary parameter along the world line x* = x®(o’) of the geodesic.

e Geodesic equation for a test particle (coordinate basis)

d2xe dxB dx? du®

i or — = —l",‘;yuﬁu”

dtiz P 4r dr dt

where t is the proper time along the geodesic and u® = dx®/dt are the coordinate basis components of the
four-velocity so that u - u = —1. The Christoffel symbols I'§ | follow from Lagrange’s equations or from the
general formula (8.19). The geodesic equation for light rays takes the same form with t replaced by an affine

parameter and u - u = 0.
e Conserved Quantities

£ - u = constant

where £ is a Killing vector, e.g., £ = (0, 1, 0, 0) in a coordinate basis where the metric gqz(x) is independent

of x1.



Preface

Einstein’s relativistic theory of gravitation—general relativity—will shortly be a
century old. At its core is one of the most beautiful and revolutionary conceptions
of modern science-—the idea that gravity is the geometry of four-dimensional
curved spacetime. Together with quantum theory, general relativity is one of the
two most profound developments of twentieth-century physics.

General relativity has been accurately tested in the solar system. It underlies
our understanding of the universe on the largest distance scales, and is central
to the explanation of such frontier astrophysical phenomena as gravitational col-
lapse, black holes, X-ray sources, neutron stars, active galactic nuclei, gravita-
tional waves, and the big bang. General relativity is the intellectual origin of many
ideas in contemporary elementary particle physics and is a necessary prerequisite
to understanding theories of the unification of all forces such as string theory.

An introduction to this subject, so basic, so well established, so central to sev-
eral branches of physics, and so interesting to the lay public is naturally a part
of the education of every undergraduate physics major. Yet teaching general rel-
ativity at an undergraduate level confronts a basic problem. The logical order of
teaching this subject (as for most others) is to assemble the necessary mathemati-
cal tools, motivate the basic defining equations, solve the equations, and apply the
solutions to physically interesting circumstances. Developing the tools of differ-
ential geometry, introducing the Einstein equation, and solving it is an elegant and
satisfying story. But it can also be a long one, too long in fact to cover both that
and introduce the many contemporary applications in the time that is typically
available for an introductory undergraduate course.

Gravity introduces general relativity in a different order. The principles on
which it is based are discussed at greater length in Appendix D, but essentially
the strategy is the following: The simplest physically relevant solutions of the
Einstein equation are presented firsz, without derivation, as spacetimes whose ob-
servational consequences are to be explored by the study of the motion of test
particles and light rays in them. This brings the student to the physical phenom-
ena as quickly as possible. It is the part of the subject most directly connected to
classical mechanics, and requires the minimum of new mathematical ideas. The
Einstein equation is introduced later and solved to show how these geometries
originate.

A course for junior or senior level physics students based on these principles
and the first two parts of this book has been part of the undergraduate curriculum
at the University of California, Santa Barbara for over twenty-five years. It works.
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Organizational Notes
Organizational Notes

The pedagogical principles that guided the writing of this boo': are explained in
Appendix D. However the following notes may be immediately useful in navigat-
ing the text:

e Boxes: The boxes contain material that illustrates or expands on the basic ma-
terial in the text. Sometimes this is a qualitative explanation of a related phe-
nomenon or idea, sometimes a description of a relevant experiment. Sometimes
these are expositions that require a knowledge of physics beyond the basic me-
chanics and special relativity that is assumed in the text. It is not necessary o
understand the boxes to understand the text.

e Problems: The labels on the problems mean the following:

A = More algebra needed than most problems.

B = Refers to a discussion in a Box.

C = More challenging than most problems.

E = Asks for an order of magnitude estimate in contrast to a calculation.

N = Requires some computer work.

P = Requires some aspect of physics outside the prerequites assumed to this
text, e.g., electromagnetism.

S = Straightforward (in the author’s opinion.)

A problem with no labels is just an ordinary problem, referring to the text, of
average difficulty, etc.

e Mathematica Programs: Several Mathematica programs are provided for
computing curvature quantities for general metrics, orbits, and cosmological
models. These can be downloaded from the website below.

o Website: A website containing current information about the book can be
found at the time of writing at:

http://www.aw.com.

This includes current errata, notebook files for the Mathematica programs, sup-
plementary discussion (Web supplements), some color pictures, and links to
other sites that were useful at the time of writing.

o A few symbols:

= defined to be

a2 approximately equal to

~ of order of magnitude

— asymptotically approaches
O the Sun

@ the Earth



COORDINATE AND ORTHONORMAL BASES

e A set {ez]} of four orthonormal basis vectors satisfies
ez (x) - ez(x) = ng5.
e A set {ey} of four coordinate basis vectors associated with a set of coordinates x® satisfies
ey (x) - eg(x) = gap(x)

where the line element has the form ds? = g, (x)dx®dx?.

e If the coordinate system is orthogonal (gop(x) = 0 for @ # f), the coordinate basis components of an
orthonormal basis pointing along the coordinate directions have the form

(ep)" = [(~go0)™"/%,0,0,0], (ep)* =10, (g11)~"/%,0,0], etc.

USEFUL NUMBERS

Conversion Factors

Velocity of light ¢ = 299792458 m/s ~ 3 x 101% cm/s
Boltzmann’s constant kp =138 x 10710 erg/K = 8.59 x 1073 eV/K
Second of arc 1 arcsec = 1”7 =4.85 x 107 rad
Light year 1ly =9.46 x 10" cm
Parsec 1 pc=3.09x 1018 cm =3.261y
Electron volt 1eV=1.60x10"2erg =1.16 x 10*K
Erg (cgs unit of energy) lerg=10"77J
Dyne (cgs unit of force) 1dyne=10"3N

Physical Constants

Gravitational constant G = 6.67 x 1078 dyn - cm?/g?
Stefan-Boltzmann constant o =5.67 x 1075 erg/(cm? . 5 - K*)
Radiation constant a =7.56 x 10715 erg/(cm® - K%)
Mass of an electron me=9.11x10"28 g
Mass of a proton mp = 1.67x 1072

Planck’s constant F=105x%x10"erg s



ASTRONOMICAL CONSTANTS

Earth
Astronomical unit

(semimajor axis of Earth's orbit)
Mass of the Earth

Equatorial radius of the Earth
Moment of inertia about rotation axis
Rotation period

Angular velocity

Sun
Mass of the Sun

Radius of the Sun

Moment of inertia about rotation axis
Rotation period at Equator

Angular velocity at Equator
Luminosity of the Sun

Moon

Radius of the Moon’s orbit (mean)
Mass of the Moon

Radius of the Moon

Our Galaxy (The Milky Way)

Mass of the Milky Way in visible matter
Radius of the luminous Milky Way disk
Luminosity of the Milky Way

Universe
Hubble Constant

Hubble Time

Hubble Distance

Critical density
Temperature of CMB today

AU = 1.50 x 108 km

=1.50 x 1013 cm

Mg =59Tx10"g

GMg/c? = 0.443 cm

Rg = 6.38 x 10® cm = 6378 km
8.04 x 10 g . cm? = .331 MgR2
8.62 x 10%s

Qg = 7.29 x 105 rad/s

Mg=199x10¥g

GMp/c* =148 km

Ro = 6.96 x 101° ¢cm = 6.96 x 10° km
57x10% g.cm?

25.5 days

2.85 %1076 rad/s

Lo = 3.85 x 10*3 erg/s

3.84 x 10° km
Mpoon = 7.35 x 105 g = Mg/81.3
Ruoon = 1.74 x 103 km

~ 101 Mg
20 — 25 kpe
~4x100 Ly,

Ho ~ (72 = D[ (km/s}/Mpc]

h = Hp/(100 [(km/s)/Mpc]) = .7 % .1
th=Hy;' =978 x 10° A~ yr

dy = cHy! = 2998 h~! Mpc

pc =3H2/87G = 1.88 x 10~%° h? g/cm®
=2.73K
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