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Preface

The main object in writing this book has been to present the subject of elementary
particle physics at a level suitable for advanced physics undergraduates or to serve
as an introductory text for graduate students.

Since the first edition of this book was produced over 25 years ago, and the third
edition over 10 years ago, there have been many revolutionary developments in the
subject, and this has necessitated a complete rewriting of the text in order to reflect
these changes in direction and emphasis. In comparison with the third edition, the
main changes have been in the removal of much of the material on hadron-hadron
interactions as well as most of the mathematical appendices, and the inclusion of
much more detail on the experimental verification of the Standard Model of particle
physics, with emphasis on the basic quark and lepton interactions. Although much
of the material is presented from the viewpoint of the Standard Model, one extra
chapter has been devoted to physics outside of the Standard Model and another to
the role of particle physics in cosmology and astrophysics.

Many - indeed most — texts on this subject place particular emphasis on the
power and beauty of the theoretical description of high energy processes. However,
progress in this field has in fact depended crucially on the close interplay of
theory and experiment. Theoretical predictions have challenged the ingenuity
of experimentalists to confirm or refute them, and equally there have been long
periods when unexpected experimental discoveries have challenged our theoretical
description of high energy phenomena. In this text. I have tried to emphasise
some of the experimental aspects of the subject and have given brief descriptions
of some of the key experiments. Some knowledge of elementary quantum
mechanics has been assumed, but generally [ have tried to present the material
from a phenomenological and empirical viewpoint, with a minimum of theoretical
formalism. A short chapter on experimental methods and techniques has been
included. placed at the end of the book so as not to interrupt the flow of the main
material.

Xi
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Although the intention is that the different chapters should be read in sequence,
[ have tried to make each one reasonably self-contained, at the price of occasional
repetition. For a shorter course, sections or even whole chapters could be left out
without too much loss to the remaining material. For example, Chapters 9, 10 and
Il and possibly much of Chapter 3 could be omitted on a first pass through the
text.

References to original papers are not comprehensive but have been cited where
[ thought this was necessary. At the end of the book I have included short
bibliographies for further reading, relating to the chapter material in general as
well as to specific topics. Sets of problems, mostly numerical, are included at the
ends of chapters.

No textbook can cover this entire subject, even at a superficial level. I have tried
to compensate for this shortcoming, and to put the subject matter on a historical
footing, by including as Appendix B a chronological list of the most important
advances in the subject over the last 100 years. This is accompanied by a short
summary of the significance and importance of these developments.

For those readers who wish to delve into the theoretical aspects of the subject at
a deeper level, I suggest the following texts, in ascending order of difficulty:

Gottfried, K., and V. F. Weisskopf, Concepts of Particle Physics (Oxford: Oxford
University Press 1984)

Halzen, F, and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern
Farticle Physics (New York: Wiley 1984)

Close, F. E., Introduction to Quarks and Partons (London: Academic 1979)
Griffiths, D., Introduction to Elementary Particles (New York: Wiley 1987)

Aitchison, L. J., and A. J. Hey, Gauge Theories in Particle Physics (Bristol: Adam Hilger
1982)

For a comprehensive text on the key experimental developments in particle physics,
including many original papers, [ recommend

Cahn, R., and G. Goidhaber, The Experimental Foundations of Particle Physics (Cam-
bridge: Cambridge University Press 1991)
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1

Quarks and leptons

1.1 Preamble

The subject of elementary particle physics may be said to have begun with the
discovery of the electron 100 years ago. In the following 50 years, one new particle
after another was discovered, mostly as a result of experiments with cosmic rays,
the only source of very high energy particles then available. However, the subject
really blossomed after 1950, following the discovery of new elementary particles
in cosmic rays; this stimulated the development of high energy accelerators,
providing intense and controlled beams of known energy that were finally to reveal
the quark substructure of matter and put the subject on a sound quantitative basis.

1.1.1 Why high energies?

Particle physics deals with the study of the elementary constituents of matter. The
word ‘elementary’ is used in the sense that such particles have no known structure,
i.e. they are pointlike. How pointlike is pointlike? This depends on the spatial
resolution of the ‘probe’ used to investigate possible structure. The resolution is
Ar if two points in an object can just be resolved as separate when they are a
distance Ar apart. Assuming the probing beam itself consists of pointlike particles,
the resolution is limited by the de Broglie wavelength of these particles, which is
A = h/p where p is the beam momentum and 4 is Planck’s constant. Thus beams
of high momentum have short wavelengths and can have high resolution. In an
optical microscope, the resolution is given by

Ar >~ A/sinf -

where 0 is the angular aperture of the light beam used to view the structure of
an object. The object scatters light into the eyepiece, and the larger the angle of
scatter 6 and the smaller the wavelength A of the incident beam the better is the
resolution. For example an ultraviolet microscope has better resolution and reveals

1



2 1 Quarks and leptons

more detail than one using visible light. Substituting the de Broglie relation, the

resolution becomes
A h h

~ — ~

T sin  psind g

so that Ar is inversely proportional to the momentum g transferred to the photons,
or other particles in an incident beam, when these are scattered by the target.t Thus
a value of momentum transfer such that gc = 10 GeV = 10!° eV — easily attainable
with present accelerator beams — gives a spatial resolution Ac/(gc) ~ 107! m,
about 10 times smaller than the known radius of the charge and mass distribution
of a proton (see Table 1.1 for the values of the units employed).

In the early decades of the twentieth century, particle-beam energies from
accelerators reached only a few MeV (106 eV), and their resolution was so poor that
protons and neutrons could themselves be regarded as elementary and pointlike.
At the present day, with a resolution thousands of times better, the fundamental
pointlike constituents of matter appear to be quarks and leptons, which are the
main subject of this text. Of course, it is possible that they in turn may have an
inner structure, but there is no present evidence for this, and whether they do will
be for future experiments to decide.

The second reason for high energies in experimental particle physics is simply
that many of the elementary particles are extremely massive and the energy
mc? required to create them is correspondingly large. The heaviest elementary
particle detected so far, the ‘top’ quark (which has to be created as a pair with its
antiparticle) has mc? ~ 175 GeV, nearly 200 times the mass—energy of a proton.

At this point it should be mentioned that the total energy in accelerator beams
required to create such massive particles in sufficient intensities is quite substantial.
For example, an energy per particle of 1 TeV (10'2 eV) in beams consisting of
bunches of 10'? accelerated particles every second will correspond to a total kinetic
energy in each bunch of 1.6 megajoules, equal to the energy of 30 000 light bulbs,
or of a 15 tonne truck travelling at 30 mph.

1.1.2 Units in high energy physics

The basic units in physics are length, mass and time and the SI system expresses
these in metres, kilograms and seconds. Such units are not very appropriate in high
energy physics, where typical lengths are 10~'> m and typical masses are 10~ kg.

Table 1.1 summarises the units commonly used in high energy physics. The
unit of length is the femtometre or fermi, where 1 fm = 10~'5 m; for example,
the root mean square radius of the charge distribution of a proton is 0.8 fm. The

t To be exact, in an elastic collision with a massive target, the momentum transfer will be q =2psin(8/2),if 6
is the angle of defiection.
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Table 1.1. Units in high energy physics

(a)
Quantity High energy unit Value in ST units
length | fm 10°5 m
energy 1 GeV = 10° eV 1.602 x 10710
mass, E/c? 1 GeV/c? 1.78 x 107 kg
h=h/2n) 6588 x 1075 GeVs 1.055x 10~ 7Js
c 2.998 x 10% fms™!  2.998 x 108 ms~!
he 0.1975 GeV fm 3162 x 1072 Jm
(b
natural units, A = ¢ = 1
mass, Mc?/c? 1 GeV
length, hc/(Mc?) 1GeV-! =0.1975 fm
time, Aic/(Mc3) 1GeV™! =6.59 x 10725 5
Heaviside—Lorentz units, g = g = =c = 1
fine structure constant o =e2/(4r) = 1/137.06

Relations between energy .units
1 MeV = 106 eV 1 GeV = 10° MeV 1 TeV = 103 GeV

commonly used unit of energy is the GeV, convenient because it is typical of the
mass—energy mc? of strongly interacting particles. For example, a proton has
M,c? = 0.938 GeV.

In calculations, the quantities # = #/(27) and ¢ occur frequently, sometimes to
high powers, and it is advantageous to use units in which we seth = ¢ = 1. Having
chosen these two units, we are still at liberty to specify one more unit, e.g. the unit
of energy, and the common choice, as indicated above, is the GeV. With ¢ = 1 this
is also the mass unit. As shown in the table, the unit of length will then be [ GeV~!
= 0.197 fermi, while the corresponding unit of time is 1 GeV~! = 6.59 x 10~ s.

Throughout this text we shall be dealing with interactions between charges -
which can be the familiar electric charge of electromagnetic interactions, the strong
charge of the strong interaction or the weak charge of the weak interaction. In the
SIsystem the unit electric charge, e, is measured in coulombs and the fine structure
constant is given by

e’ 1
a = >~ —
4mephc 137

Here € is the permittivity of free space, while its permeability is defined as pg,
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such that egpo = 1/c?. For interactions in general, such units are not useful and
we can define e in Heaviside~Lorentz units, which require g = uo = h =c = 1,
so that
_ e? N |
T T
with similar definitions that relate charges and coupling constants analogous to o
in the other interactions.

1.1.3 Relativistic transformations

In most of the processes to be considered in high energy physics, the individual
particles have relativistic or near relativistic velocities, v ~ c. This means that
the result of a measurement, e.g. the lifetime of an unstable particle, will depend
on the reference frame in which it is made. It follows that one requirement of
any theory of elementary particles is that it should obey a fundamental symmetry,
namely invariance under a relativistic transformation, so that the equations will
have the same form in all reference frames. This can be achieved by formulating
the equations in terms of 4-vectors, which we now discuss briefly, together with
the notation employed in this text.

The relativistic relation between total energy E, the vector 3-momentum p (with
Cartesian components py, p,, p.) and the rest mass m for a free particle is

E? = p’c® + m?c*
or, in units withc = 1
E?=p? +m?
The components p., py, p;. E can be written as components of an energy—
momentum 4-vector p,, where 4 = 1, 2, 3, 4. In the Minkowski convention

used in this text, the three momentum (or space) components are taken to be real
and the energy (or time) component to be imaginary, as follows:

Pr=Ppy, P2=py, p3=p;, ps=IiE
so that
PP=) pi=pi+pi+pi+pl=p*—E'=—m? (1.1
u
Thus p? is a relativistic invariant. Its value is —m?, where m is the rest mass,

and clearly has the same value in all reference frames. If E, p refer to the values
measured in the lab frame ) then those in another frame, say Y, moving along
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the x-axis with velocity Bc are found from the Lorentz transformation, given in
matrix form by

4
’ § :
py_ = alﬂ’p"

v=1

where
14 0 0 i8y
1o 10 o0
w=lo 01 0
-y 0 0 vy
and y = 1/y/T = 2. Thus
pi =vp1+iBypas
Py =p2
Py =ps
pi=—iBypi+yps
In terms of energy and momentum
p. =v(px — BE)
P; =Py
P; = P:
E'=y(E - Bps)
with, of course, p’'2 — E’? = —m?. The above transformations apply equally to the

space-time coordinates, making the replacements p; — x;(= x), p» = x2(=y),
Py — x3(= 2) and py — xy(= i1). _

The 4-momentum squared in (1.1) is an example of a Lorentz scalar, i.e. the
invariant scalar product of two 4-vectors, ) p, p,. Another example is the phase
of a plane wave, which determines whether it is at a crest or a trough and which
must be the same for all observers. With k and o as the propagation vector and the
angular frequency, and in units 4 = ¢ = 1,

phase:k-x—wt=p-x——Et=Zpuxu

The Minkowski notation used here for 4-vectors defines the metric, namely the
square of the 4-vector momentum p = (p, { E) so that

metric = (4-momentum)® = (3-momentum)’ — (energy)2

In analogy with the space-time components, the components p,,. of 3-
momentum are said to be spacelike and the energy component E, timelike. Thus,
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if g denotes the 4-momentum transfer in a reaction, i.e. is ¢ = p — p’ where p, p’
are the initial and final 4-momenta, then

g’>0 is spacelike, e.g. in a scattering process (12)
g* <0 is timelike, e.g. the squared mass of a free particle '
A different notation is used in texts on field theory. These avoid the use of the
imaginary fourth component (p; = i E) and introduce the negative sign via the
metric tensor g,,,. The scalar product of 4-vectors A and B is then defined as

AB =g,,Ay B, = AgBy - A -B (1.3)

where all the components are real. Here u, v = 0 stand for the energy (or time)
component and &, v = 1, 2, 3 for the momentum (or space) components, and

goo=+1, gu=gn=gn=-1, g, =0 for us#v (1.4)

This metric results in Lorentz scalars with sign opposite to those using the
Minkowski convention in (1.2), so that a spacelike (or timelike) 4-momentum has
g> < 0(org? > 0) respectively. Sometimes, to avoid writing negative quantities,
re-definitions have to be made. In deep inelastic electron scattering, g2 is spacelike
and negative, as defined in (1.3), and in discussing such processes it has become
common to define the positive quantity 0% = —g2. This simply illustrates the fact
that the sign of the metric is just a matter of convention and does not in any way
affect the physical results.

1.1.4 Fixed-target and colliding beam accelerators

As an example of the application of 4-vector notation, we consider the energy
available for particle creation in fixed-target and in colliding-beam accelerators
(see also Chapter 11).

Suppose an incident particle of mass m 4, total energy E 4 and momentum p, hits
a target particle of mass mp, energy Eg, momentum pa. The total 4-momentum,
squared, of the system is

P’ = (Pa+ps) ~ (Es+Ep) = —m? —m% + 2ps - pp — 2EAEjp (L.5)

The centre-of-momentum system (cms) is defined as the reference frame in which
the total 3-momentum is zero. If the total energy in the cms is denoted E*, then we
also have p> = —E*2,

Suppose first of all that the target particle (mp) is at rest in the laboratory (lab)
system, so that pp = 0 and Eg = mp, while E4 is the energy of the incident
particle in the lab system. Then

*2

E® = —p*=m} +m} +2mpE, (1.6)
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Secondly, suppose that the incident and target particles travel in opposite directions,
as would be the case in an e*e™ or a pp collider. Then, with p, and pp denoting
the absolute values of the 3-momenta, the above equation gives

E* = —p* =2(EsEg + paps) + (m% +m})

if my,mg « E4, Eg. This result is for a head-on collision. For two beams
crossing at an angle 6, the result would be E** = 2E,Eg(l + cosf). We note
that the cms energy available for new particle creation in a collider with equal
energies E in the two beams rises linearly with E, i.e. E* >~ 2E, while for a
fixed-target machine the cms energy rises as the square root of the incident energy,
E* >~ \/2mpE 4. Obviously, therefore, the highest possible energies for creating
new particles are to be found at colliding-beam accelerators. As an example, the
cms energy of the Tevatron p p collider at Fermilab is E* = 2 TeV = 2000 GeV. To
obtain the same cms energy with a ﬁXed-target accelerator, the energy of the proton
beam, in collision with a target nucleon, would have to be E4 = E*?/(2mp) ~
2 x 10° GeV = 2000 TeV.

1.2 The Standard Model of particle physics
1.2.1 The fundamental fermions

Practically all experimental data from high energy experiments can be accounted
for by the so-called Standard Model of particles and their interactions, formulated
in the 1970s. According to this model, all matter is built from a small number of
fundamental spin 5' particles, or fermions: six quarks and six leptons. For each of
the various fundamental constituents, its symbol and the ratio of its electric charge
Q to the elementary charge e of the electron are given in Table 1.2.

The leptons carry integral electric charge. The electron e with unit negative
charge is familiar to everyone, and the other charged leptons are the muon u
and the tauon 7. These are heavy versions of the electron. The neutral leptons
are called neutrinos, denoted by the generic symbol v. A different ‘flavour’
of neutrino is' paired with each ‘flavour’ of charged lepton, as indicated by the
subscript. For example, in nuclear S-decay, an electron e is emitted together with
an electron-type neutrino, v,. The charged muon and tauon are both unstable, and
decay spontaneously to electrons, neutrinos and other particles. The mean lifetime
of the muon is 2.2 x 10% s, that of the tauon only 2.9 x 10~ s,

Neutrinos were postulated by Pauli in 1930 in order to account for the energy and
momentum missing in the process of nuclear S-decay (see Figure 1.1). The actual
existence of neutrinos as independent particles, detected by their interactions, was



