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Preface

The purpose of this book is to teach the basic theoretical principles of plasma
physics. It is not intended to be an encyclopedia of results and techniques. Noris it
intended to be used primarily as a reference book. 1t is intended to develop the
basic techniques of plasma physics from the beginning, namely. from Maxwell's
equations and Newton’s law of motion. Absolutely no previous knowledge of
plasma physics is assumed. Although the book is primarily intended for a one vear
course at the first or second year graduate level. it can also be used for a one or
two semester course at the junior or senior undergraduate level. Such an under-
graduate course would make use of that half of the book which assumes a knowi-
edge only of undergraduate electricity and rﬁagnetism. The other half of the book,
suitable for the graduate level. requires tamiliarity with complex variables, Fourier
transformation, and .the Dirac delta function.

The book is organized in a logical fashion. Although this is not the standard
organization of an introductory course in plasma physics. 1 have found that
students at the graduate level respond well to this organization. After the intro-
ductory material of Chapters I and 2 (single particle motion), the exact theories of
Chapters 3 to 5 (Klimontovich and Liouville equations), which are equivalent to
Maxwell’s equations plus Newton’s law of motion. are replaced via approxima-
tions by the Vlasov equation of Chapter 6. Further approximations lead to the

_ fluid theory (Chapter 7) and magnetohydrodynamic theory (Chapter 8). The book
. concludes with two chapters on discrete particle effects (Chapter 9) and weak
turbulence theory (Chapter 10). Chapter 6, and Chapters 7 and 8, are meant 1o be
self-contained, so that the book can easily be used by instrudtors who wish the
standard organization. Thus, the introductory material of Chapters 1 and 2 can be
immediately followed by Chapters 7 and 8. This would be enough material for a
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il Predece

one semester undergraduate course, while the first half of a two semester graduate
course could continue with Chapter 6 on Vlasov theory, followed in the second
semester by Chapters 3 to 5 on kinetic theory and then by Chapters 9 and 10.

It is a pleasure to acknowledge the help of many individuals in writing this
book. My views on plasma physics have been shaped over the years by dozens of
plasma physicists, especially Allan N. Kaufman and Martin V. Goldman. The
students in graduate plasma physics courses at the University of Colorado and the
University of Iowa have contributed many useful suggestions (Sun Guo-Zheng
deserves special mention). The manuscript was professionally typed and edited by
Alice Conwell Shank, Gail Maxwell, Susan D. Imhoff, and Janet R. Kephart. The
figures were skillfully drafted by John R. Birkbeck, Jr. and Jeana K. Wonderlich.
The preparation of this book was supported by the University of Colorado, the
University of Iowa, the United States Department of Energy, the United States
National Aeronautics and Space Administration, and the United States National
Science Foundation.

Dwight R. Nicholson
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CHAPTER

Introduction

1.1 INTRODUCTION

A plasma is a gas of charged particles, in which the potential energy of a typical
particle due to its nearest neighbor is much smaller than its kinetic energy. The
Plasma state is the fourth state of matter: heating a solid makes a liquid, heating a
liquid makes a gas, heating a gas makes a plasma. (Compare the ancient Greeks®
earth, water, air, and fire.) The word plasma comes from the Greek pldsma,
meaning ‘“‘something formed or molded.” It was introduced to describe ionized
gases by Tonks and Langmuir [1]. More than 99% of the known universe is in the
plasma state. (Note that our definition excludes certain configurations such as the
electron gas in a metal and so-called “'strongly coupled” plasmas which are found,
for example, near the surface of the sun. These need to be treated by techniques
other than those found in this book.)

In this book, we shall always consider plasma having roughly equal numbers of
singly charged ions (+¢) and electrons (—e), each with average density n,, (particles

EXERCISE Namea well-known proposed source of energy that involves plasma
with more than one species of jon.

1.2 DEBYE SHIELDING

Ina plasma we have many charged particles flying around at high speeds. Consider
a Special test particle of charge ¢, > 0and infinite mass, located at the origin of 4



2 Introduction

three-dimensional coordinate system containing an infinite, uniform plasma. The
test charge repels all other ions, and attracts all electrons. Thus, around our test
charge the electron density n, increases and the ion density decreases. The test jon
gathers a shielding cloud that tends to cancel its own charge (Fig. 1.1).

Consider Poisson’s equation relating the electric potential ¢ to the charge densi-
ty p due to electrons, ions, and test charge,

Vig = —4xp = dme(n, — n) — 4wg, &r) (L.

where 3(r) = x)&(y)8(z) is the product of three Dirac delta functions. After the
introduction of the test charge, we wait for a long enough time that the elcctrons
with temperature 7, have come to thermal equilibrium with themselves, and the
ions with temperature T, have come to thermal equilibrium with themselves, but
not so long that the electrons and ions have come to thermal equihbrium with each
other at the same temperature (see Section 1.6). Then equilibrium statistical me-
chanics predicts that

n, = n, exp (‘;‘.f), n,=noexp(—;—‘€) (1.2)

i

where each density becomes n, at large distances from the test charge where the
potential vanishes. Boltzmann’s constant is absorhed into the temperatures 7, and
T, which have units of energy and are measured in un#ts of electron-volts (eV).

Assuming that e/T, << [ and ew/T, <<<< |, we expand the exponents in (1.2)
and write (1.1) away fromr = 0 as

1 1 1
Vi = 7}"7( zfi) — (___ + ).p (1.3)

" dr T, T T

Fig. 1.1 A testcharge in a plasma attracts particles of opposite sign and repels ghrtini®s of
like sign. thus forming a shielding cloud that tends to cancel its charge.

"



Piasma Parameter 3

If we define the electron and ion Debye lengths

T“ 1/2
Aes = (4rrn0e2) (1.4)
and the total Debye length
Ap? = AT+ AT (1.5)
Eq. (1.3) then becomes
1 d ., do )
G 'dT(" ‘a‘;‘) T o'y (1.6
Trying a solution of the form ¢ = ¢/r, we find
d?.& 2~
P Ap @ (1.7

The solution that falls off properly atlarge distances is ¢ < exp (—r/Ap). From
elementary electricity and magnetism we know that the solution to (1.1) at loca-
tions very close tor = 01is ¢ = g/, thus, the desired solution to (1.1) at all
- distances 1s

= 97 -
¢ r CXP()\D) (1.8)

The potential due to a test charge in a plasma falls off much faster than in vacuum.
This phenomenon is known as Debye shielding. and is our first example of plasma
cotlective behavior. For distances r >>> the Debye length A, the shielding cloud
effectively cancels the test charge g,. Numerically, the Debye length of species s
with temperature 7 is roughly A, = 740[T,(eV)/n(cm™)]' ? in units of cm.

EXERCISE Prove that the net charge in the shielding cloud exactly cancels the
test charge g ’

It is not necessary that g, be a special particle. In fact, each particle in a piasma
tries to gather its own shielding cloud. However, since the particles are moving,
they are not completely successful. In an equal temperature plasma (7, = 7,), a
typical slowly moving ion has the full electron component of its shielding cloud
and a part of the ion component, while a typical rapidly moving electron has a
part of the electron component of its shielding cloud and almost none of the ion
component,

1.3 PLASMA PARAMETER

In a plasma where each species has density a,, the distance between a particle and
its nearest neighbor is roughly n,""*. The average potential energy & of a particle

due to its nearest neighbor is, in absolute value,
2

e L
[P N—;"A’”U/' e (1.9)
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Our dcfinition of a plasma requires that this potential energy be much less than the
typical particle’s kinetic energy

1 3 3,

_ 2y = = = =
) m.s(v> 2 Ts 2 mg

where m,is the mass of species s, { ) means an average over all particle velocities
at a given point in space, and we have defined the thermal speed v, of species s by

T \72
v, = ( ) (1.11)

Mg

(1.10)

For electrons, v, = 4 X 107 T,'/? (¢V) in units of cm/s. Our definition of a
plasma requires

nylder << T, (1.12)
or
T
vy (s
ny (no pe ) >> (1.13)

Raising each side of (1.13) to the 3/2 power, and recalling the definition (1.4) of
the Debye length, we have (dropping factors of 4, etc.)

A, = noA,) >> 1 (1.14)

where A, is called the plasma parameter of species s. (Note: Some authors call A[™
the plasma parameter.) The plasma parameter is just the number of particles of
species s in a box each side of which has length the Debye length (a Debye cube).
Equation (1.14) tells us that, by definition, a plasma is an ionized gas that has
many particles in a Debye cube. Numerically, A, = 4 X 108 T2%(eV)/n,"*(cm™).
We will often substiiute the total Debye length A, in (1.14), and define the result
A = ny Ap’ to be the plasma parameter.

EXERCISE Evaluate the electron thermal speed, electron Debye length, and

electron plasma parameter for the following plasmas.

(a) A tokamak or mirror machine with 7, = 1 keV, n, = 10"’ cm™

(b} The solar wind near the earth with T, = 10 eV, n, = 10 cm™,

(¢) The ionosphere at 300 km above the earth’s surface with 7, = 0.1 eV,
n, = 10® cm™,

(d) A laser fusion, electron beam fusion, or ion beam fusion plasma with
T, =~ 1 keV, n, = 10*° cm™.

(e) The sun’s center with T. = 1keV, n, = 10® cm .

It is fairly easy to see why many ionized gases found in nature are indeed plasmas.
If the potential energy of a particle due to its nearest neighbor were greater than its
kinetic energy, then there would be a strong tendency for electrons and ions to
bind together into atoms, thus destroying the plasma. The need to keep ions and
electrons from forming bound states means that most plasmas have temperatures
in excess of one electron-volt.



Plasma Frequency 5

EXERCISE The temperature of intergalactic plasma is currently unknown, but
it could well be much lower than 1 eV. How could the plasma maintain itself at
such a low temperature? (Hint: n, = 107" cm™).

Of course, it is possible to find situations where a plasma exists jointly with
another state. For example, in the lower ionosphere there are regions where 99%
of the atoms are neutral and only 1% are ionized. In this partially ionized plasma,
the 1onized component can be a legitimate plasma according to (1.14), where A,
should be calculated using only the parameters of the ionized component. Typical-
ly, there will be a continuous exchange of particles between the unionized gas and
the ionized plasma, through the processes of atomic recombination and ioniza-
tion. ‘

We can now evaluate the validity of the assumption made before (1.3), that
ee/T, << 1. This assumption is most severe for the nearest neighbor to the test
charge (which we now take to have charge ¢, = +¢). Using the unshielded form of
the potential, we require

He) ) o
5 s 0
or

n,%e? << T, (1.16)

which is just the condition (1.12) required by the definition of a plasma. Thus, our
derivation of Debye shielding is correct for any ionized gas that is indeed a
plasma.

1.4 PLASMA FREQUENCY

Consider a hypothetical slab of plasma of thickness L, where for the present we
consider the ions to have infinite mass, but equal density n, and opposite charge to
the electrons while the electrons are held rigidly in place with respect to each other,
but can move freely through the ions. Suppose the electron slab is displaced a
distance 8 to the right of the ion slab and then allowed to move freely (Fig. 1.2).
What happens?

An clectric field will be set up, causing the electron slab to be pulled back
toward the ions. When the electrons exactly overlap the 10ons, the net force is zero,
but the electron slab has substantial speed to the left. Thus, the electron slab
overshoots, and the net result is harmonic oscillation. The frequency of the oscilla-
tion is called the electron plasma frequency. 1t depends only on the electron densi-
ty, the electron charge, and the electron mass. Let’s calculate it.

Poisson’s equation in one dimension is (9, = 3/0x)

a.E = 4mnp (1.17)
where E is the electric field. Referring to Fig. 1.3, we take the boundary condition
E(x = () = 0, and assume throughout that § << L. From (1.17) the electric field
over most of the slab is 4mn.e8, and the foree per unit area on the electron slab is
(electric field) X (charge per unit area) or ~dyn, e ol. Newton’s second law is
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Fig. 1.2 Plasma slab mode! used to calculate the plasma frequency.

(force per unit area) = (mass per unit area) X (acceleration), or

(—47wn,2e*8L) = (ngm L)8) (1.18)
where an overdot is a time derivative. Equation (1.18) is in the standard form ofa
harmonic oscillator equation,

. 4 2
3 +_( L )a =0 (1.19)
m!
with characteristic frequency
4 2y 172
w, = ( ’"’""-) (1.20)
m?

which is called the electron plasma frequency. Numerically, w, = 27 X 9000 n'?

(cm™) in units of s\,

EXERCISE Calculate the electron plasma frequency w, and w./27 (e.g., in MH:z
and kHz) for the five plasmas in the exercise below (1.14).

By analogy with the electron plasma frequency (1.20) we define the ion plasma
frequency w, for a general ion species with density n, and ion charge Ze as ~
(4#",-2281)"2 -
w =\
m;
The total plasma frequency w, for a two-component plasma is defined as

w) = ol + w} (1.22)

(1.21)
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P :
A
n#
-
L L+8 .

1 X

[+4 H

(a)
E(x)
Swen,
1 1 -
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Fig. 1.3 Calculation of the electron plasma frequency. (a) Charge density. (b) Electric
field.

(Sec Problcm 1.3.) For most plasmas in nature w, >> w;, 50 w,” =~ w,’. We will
see in a later chapter that the general response of an unmagnetized plasma to a
perturbation in the electron density is a sct of oscillations with frequencies very
close to the electron plasma frequency w,.

The relation among the Debye length A,. the plasma frequency w,, and the
thermal speed v, for the species s, is

A, = v,/ w, (1.23)

EXERCISE ' Demonstrate (1.23).

15 OTHER PARAMETERS

Many of the plasmas in nature and in the laboratory occur in the presence of
magnetic fields. Thus, it i1s important to consider the motion of an individual
charged particle in 2 magnetic field. The Lorentz force equation for a particle of
charge ¢, and mass m, moving in a constant magnetic field B = B2 is

mi = ‘7; (t X B,?) (1.24)

Fo£ imiglal conditions r(/ = 0) = (x,,y4,2,) and r(z = 0) = (0, v, ,v,) the solu-
tion of (1.24) is

vy
x(t) = xy, + (T(] — cos {}2)
v, .
yie) =y, + —n——sm 0,z

z(t) = z, + vt (1.25)
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where we have defined the gyrofrequency

n, = &5 (1.26)

mg

]

EXERCISE Verify that (1.25) is the solution of (1.24) with the desired initial condi-
tions.

Numerically, Q, = — 2 X 10" B, (gauss, abbreviated G) in units of s',and ), =
10* B, (gauss) in units of s™' if the ions are protons. /

The nature of the motion (1.25) i$ a constant velocity in the 2-direction, and a
circular gyration in the x-y plane with angular frequency {Q,] and center at the
guiding center position r, given by

re = (xo + v, /0, Yo, 2o + v,t) _(1.27)
The radius of the circle in the x-y plane is the gyroradius v, /|Q,|. The mean
gyroradius r, of species s is defined by setting v, equal to the thermal speed, so

r. = v/ (1.28)

EXERCISE In the exercise below (1.14), calculate and order the frequencies w,,
w; |Q, Q; also calculate the gyroradii r, and r;; take T, = T. and use the
following parameters.

(a) Protons, B, = 10 kG.

(b) Protons, B, = 10° G.

(¢) O ions,B, = 0.5G.

(d) Deuterons, B, = 0 and B, = 10°G.
(e) Protons, By = 100 G.

fl

At this point, let us briefly mention relativistic and quantum effects. For simplici-
ty, we shall always treat nonrelativistic plasmas. In principle, there is no difficulty
in generalizing any of the results of this course to include special relativistic effects:
these are discussed at length in the book by Clemmow and Dougherty [2].

EXERCISE To what regime of electron temperature are we limited by the non-
relativistic assumption? How about ion temperature if the ions are protons?

There are, of course, many plasmas in which special relativistic effects do be-
come important. For example, cosmic rays may be thought of as a component of
the interstellar and intergalactic plasma with relativistic temperature.

We shall also neglect quantum mechanical effects. For most of the laboratory
and astrophysical plasmas in which we might be interested, this is a good assump-
tion. There are, of course, plasmas in which quantum effects are very important.
An example would be solid state plasmas. As a rough criterion for the neglect of
quantum effects, onc might require that the typical de Broglie length A/m v, be
much less than the average distance between particles n,”"%.



