\\\\\

% 2 R h # 3

Effective C#

(Z23ZhR)

A
vy

Scott Meyers, Consulting Editor

ffective

50 Specific Ways to Improve Your C#

(3€6) Bill Wagner #*

LM T b WO #

China Machine Press

2 A R W B E

Effective C#

(Z23ZhR)

Effective C# s B4 5
50 Specific Ways to Improve YourC#

(%) Bill Wagner

hhhhhhhhhhhhh

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China

Machine Press.
Original English language title: Effective C#: 50 Specific Ways to Improve Your C#

(ISBN 0-321-24566-0) by Bill Wagner, Copyright © 2005.

All rights reserved.
Published by arrangement with the original publisher, Pearson Education, Inc.,

publishing as Addison-Wesley.
For sale and distribution in the People’s Republic of China exclusively (except Taiwan,

Hong Kong SAR and Macau SAR).

A 53 SCRZERR th Pearson Education Asia Ltd. $#Z2AUHLAE Toll AR # A AR . K&
AR & B HE PR, AELMEM S R E HSb A BAZE.

(U T rh e NRAEFESEN (TP EEE, BRI AT EGE#X)
HELTT.

-5 £} fi W 4 Pearson Education (¥fAEHE HAER) BOEPithinE, TIHREET
.

WA, BAULE.
FHE@EME ARHRIERITESR

AP IS . EF. 01-2005-4832

BBERSE (CIP) ¥R

Effective C# (33ChR) / (32) E#sah (Wagner, B.) 3. —Jba(: LR Tk kR,
2006.1

(W AR E)

H4H 3. Effective C# 50 Specific Ways to Improve Your C#

ISBN 7-111-17473-9

1.E- I.E- O CEZ-BFE-%Ex V. TP312
o E AR A A5 R CIPK IR+ (2005) #112828%

FUM Tl AR A (Aesom ks & B ek #4225 WBELZ3ET 100037)
L. BiIREF

e stAbHIR T ENR - B EALE R AITR R AT

20064 1 A 55 1IR3 1R ER R

718mm x 1020mm 1/16 - 20.25E[13k

EN%: 0001-3 000/}

E{: 35.005¢

LA, AR, R, BT, AARTHiRGR
A gHhek. (010) 68326294

LhRE BY1E

KEE ML, FRERAOFHEEMMNESEENFERATE, E8EFEXERRH
ZHENGIREE T 2R YE, BERXENER, EXEEREEARARRNAT
HEEALAREN, MEAR., FELEHHEERS, XKENF LR SHEEFERERT
24, HEVERFRIE £ R LI R SR MBER &AL, Bm&ENS R
B2, AMUEMTHRNES, TRETH¥ANEE, REEFARALE, XBFHZ
A, RN EHASESE AR RS .

L4, FELIRERMLAHNEDT, REMNTEL™LERAE, MELAFIFE
kAZEY, X HENEETFMUERTERIE, BEKR, ML LBMHIRBIRE
HERK LIEEHERE, EREFEEARZBHAEE. MARKIBIART, £
AR AERARTEILBZERHILHERRENSREM DA TS ERELEZL.
Fit, Sl—#tEIMEF RS RE T EBEF LR RERRAHESIERM,
HESHFEH, BIREENEF —RXFHLHZE,

HUM Tl AR A B S BARA FRERIRE “HREAHETRS . H1998%
Fria, LEAFTRB THEESARET #E, BiIFRMBEEM L. 23ILENTRE D,
#{15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann% it 5§ 3 4 H}
RARBITRIEMAEEXRZ, ANEBIMNAENEAMHEM P E & Tanenbaum,
Stroustrup, Kernighan, Jim GrayZ ki &K H—#LBHMER, L “UHENBHEAE" 4
BERHR, figges], MRERER. ABRALENHE, DEARTXENBHMAA
ForgiA,

“HEHEHEAE” WHETESSETRRNIIMEENR IR, BEANNERAMERM
THEREERS, SAFEEHBETHIEFNERNIE, MEBHERTRMELRE
HERERENEE, ANEERAXBENFERERF. £4, “HELRZEMAE" B2
AR TIEEA G, XEBHFAEEPRITREFVOR, HETFLZRRRANERHK
HMSEBE, SR 5RBITT T REAERM,

B & F R IR E EE MM R ENEBEL, HFFIEMENBEMTLK
R REE A —NEFRIME, Ak, REATEMASIHEEMHALE, £ “REHF
FIBMRIZ THIR=ARFIHENEM . B RN 25, MREENRIE
b, WEMAFRLY “2HFRBE" R, SIH#H2XBTHEEHFF “Schaum’s
Outlines” RFIAK “LELHLEINKRRI ., ATRIEX=ZENBHBERYE, HH @
AT EFHAEEMEMIRS, EEATRE T PEBER. bR K%, HEXE,
EBRH A%, ERAKSE,. LERERE. Brk¥. WLA%. FEBEKE. BFR

iv

BT k%, BRSGEKRE. PEARKY. EFRMEMK A%, LRBPBAZE, FLl
K% BREBTRY. BMAE, BiLT%k, PEERERBRZ2MEPANETOFHE
N E A KEFRBAE T ENLN AN SR E AR EAR “FXERERE, AR
RULEEE RN REE.

X =2 N R R R DR A R AMNR B S B, YE NIRRT ENLRARR
L\ EEITEN., EhiF2EMHEAM. L T., Stanford, U.C. Berkeley, C. M.
U. SHRLZMAEFRA, MURETEFIRI. S8, BERE. HENWGRE
¥, NERE. BEREE. RETER. BRE. BEE5F%. BESESFENKETR
R FIRMROIER, MLEASEe—ANHAESRIEZT. ANER=T
EHAE. ANCHLSHROLEMBRRA. EXEEREENLMRENESIZT,
EESBETENRENE R AR ETMAE, ‘

REMEE. BROEH. —KMiEE, FROTEE. BANRE, XERRER
TNMESBA T RENGRIE, BERMNGBFEERERE, MRROBRLERERIERZX—
A BARE B, SMHRRERMNAGERS R A, FEA XA EMHMIX
EMBMOTERHBNRATRE, RIWKRLZWT:

B F#lf4E:: hzjsj@hzbook.com
BEAHE: (010) 68995264

PR AL dERHRERKE G EEFLS
WP B 4ah5 . 100037

Praise for Effective C#

“This book really demonstrates Bill’s strengths as a writer and programmer. In a
very short amount of time, he is able to present an issue, fix it, and conclude it;
each chapter is tight, succinct, and to the point.”

—TJosh Holmes, independent contractor

“The book provides a good introduction to the C# language elements from
a pragmatic point of view, identifying best practices along the way and following
a clear and logical progression from the basic syntax to creating components to
improving your code-writing skills. Since each topic is covered in short entries, it
is very easy to read and you’ll quickly realize the benefits of the book.”

—Tomas Restrepo, Microsoft MVP

“The book covers the basics well, especially with respect to the decisions needed
when deriving classes from System.Object. It is easy to read with examples that
are clear, concise, and solid. I think it will bring good value to most readers.”

—Rob Steele, Central Region Integration COE and Lead Architect, Microsoft

“Effective C# provides the C# developer with the tools they need to rapidly grow
their experience in Visual C# 2003 while also providing insight into the many
improvements to the language that will be hitting a desktop near you in the form
of Visual C# 2005.”

—Doug Holland, Precision Objects

“Part of the point of the .NET Framework—and the C# Language, in particu-
lar—is to let the developer focus on solving customer problems and delivering a
product, rather than spending hours (or even weeks) writing plumbing code.
Bill Wagner’s Effective C# not only shows you what’s going on behind the scenes,
but also shows you how to take advantage of particular C# code constructs.
Written in a dispassionate style that focuses on the facts—and just the facts—of
writing effective C# code, Wagner’s book drills down into practices that will let
you write C# applications and components that are easier to maintain as well as
faster to run. ’'m recommending Effective C# to all students of my “NET Boot-
Camp” and other C#-related courses.

—Richard Hale Shaw, www.RichardHaleShawGroup.com

“Effective C# is very well organized and easy to read with a good mix of code and
explanations that give the reader deep understanding of the topic. The author is
an authority on C# and the .NET runtime, but keeps the content accessible and
easy to read through a conversational tone while still imparting expert knowl-

edge to the reader”
—Brian Noyes, Principal Software Architect, IDesign, Inc.

Introduction

This book is designed to offer practical advice for the programmer on
how to improve productivity when using the C# language and the NET
libraries. In it, I have comprised 50 key items, or minitopics, related to the
most-frequently-asked questions that I (and other C# consultants) have
encountered while working with the C# community.

I started using C# after more than 10 years of C++ development, and it
seems that many C# developers are following suit. Throughout the book,
I discuss where following C++ practices may cause problems in using C#.
Other C# developers are coming to the language with a strong Java back-
ground; they may find some of these passages rather obvious. Because
some of the best practices change from Java to C#, I encourage Java
developers to pay special attention to the discussions on value types
(see Chapter 1, “C# Language Elements”). In addition, the NET Garbage
Collector behaves differently than the JVM Garbage Collector (see
Chapter 2, “NET Resource Management”).

The items in this book are the collection of recommendations that I most
often give developers. Although not all items are universal, most of the
items can be easily applied to everyday programming scenarios. These
include discussions on Properties (Item 1), Conditional Compilation
(Item 4), Immutable Types (Item 7), Equality (Item 9), ICloneable (Item
27), and the new Modifier (Item 29). It has been my experience that, in
most situations, decreasing development time and writing good code are
the primary goals of the programmer. Certain scientific and engineering
applications may place the highest premium on the overall performance
of the system. Still, for others, it’s all about the scalability. Depending on
your goals, you might find particular information more (or less) relevant
under certain circumstances. To address this, I have tried to explain the
goals in detail. My discussions on readonly and const (Item 2), Serializ-
able Types (Item 25), CLS Compliance (Item 31), Web Methods

viii

Introduction

(Item 34), and DataSets (Item 41) assume certain design goals. Those
goals are spelled out in these items, so that you can decide what is most

applicable for you in your given situation.

Although each item in Effective C# stands alone, it is important to under-
stand that the items have been organized around major topics, such as C#
language syntax, resource management, and object and component
design. This is no accident. My goal is to maximize learning the material
covered in the book by leveraging and building each item on earlier items.
Don'’t let that keep you from using it as a reference, though. If you have
specific questions, this book functions well as the ideal “ask-me” tool.

Please keep in mind that this is not a tutorial or a guide to the language,
nor is it going to teach you C# syntax or structure. My goal is to provide
guidance on the best constructs to use in different situations.

Who Should Read this Book?

Effective C# is written for professional developers, those programmers
who use C# in their daily work lives. It assumes that you have some expe-
rience with object-oriented programming and at least one language in
the C family: C, C++, C#, or Java. Developers with a Visual Basic 6 back-
ground should be familiar with both the C# syntax and object-oriented
design before reading this book.

Additionally, you should have some experience with the major areas of
NET: Web Services, ADO.NET, Web forms, and Windows Forms. I refer-
ence these concepts throughout the book.

To fully take advantage of this book, you should understand the way
the .NET environment handles assemblies, the Microsoft Intermediate
Language (MSIL), and executable code. The C# compiler produces
assemblies that contain MSIL, which I often abbreviate as IL. When an
assembly is loaded, the Just In Time (JIT) Compiler converts that MSIL
into machine-executable code. The C# compiler does perform some opti-
mizations, but the JIT compiler is responsible for many more effective
optimizations, such as inlining. Throughout the book, I've explained
which process is involved in which optimizations. This two-step compila-
tion process has a significant effect on which constructs perform best in

- different situations.

About the Contents ix

About the Content

Chapter 1, “C# Language Elements,” discusses the C# syntax elements and
the core methods of System.Object that are part of every type you
write. These are the topics that you must remember every day when you
write C# code: declarations, statements, algorithms, and the System.
Object interface. In addition, all the items that directly relate to the dis-
tinction between value types and reference types are in this chapter. Many
items have some differences, depending on whether you are using a refer-
ence type (class) or a value type (struct). I strongly encourage you to read
the discussions on value and reference types (Items 6 through 8) before
reading deeper into the book.

Chapter 2, “NET Resource Management,” covers resource management
with C# and .NET. You'll learn how to optimize your resource allocation
and usage patterns for the .NET managed execution environment. Yes,
the .NET Garbage Collector makes your life much simpler. Memory
management is the environment’s responsibility, not yours. But, your
actions can have a big impact on how well the Garbage Collector per-
forms for your application. And even if memory is not your problem,
nonmemory resources are still your responsibility; they can be handled
through IDisposable. You'll learn the best practices for resource man-

agement in .NET here.

Chapter 3, “Expressing Designs with C#,” covers object-oriented design
from a C# perspective. C# provides a rich palette of tools for your use.
Sometimes, the same problems can be solved in many ways: using inter-
faces, delegates, events, or attributes and reflection. Which one you pick
will have a huge impact on the future maintainability of your system.
Choosing the best representation of your design will help to make it
easier for the programmers using your types. The most natural represen-
tation will make your intent clearer. Your types will be easier to use and
harder to misuse. The items in Chapter 3 focus on the design decisions
you will make and when each C# idiom is most appropriate.

Chapter 4, “Creating Binary Components,” covers components and lan-
guage interoperability. You'll learn how to write components that can be
consumed by other .NET languages, without sacrificing your favorite C#
features. You'll also learn how to subdivide your classes into components
_in order to upgrade pieces of your application. You should be able to
release new versions of a component without redistributing the entire

application.

X

Introduction

Chapter 5, “Working with the Framework,” covers underutilized portions
of the NET Framework. I see a strong desire in many developers to create
their own software rather than use what’s already been built. Maybe it’s
the size of the .NET Framework that causes this; maybe it’s that the
framework is completely new. These items cover the parts of the frame-
work where I have seen developers reinvent the wheel rather than use
what they’ve been given. Save yourself the time by learning how to use the

framework more efficiently.

Chapter 6, “Miscellaneous,” finishes with items that did not fit in the
other categories and with a look forward. Look here for C# 2.0 informa-
tion, standards information, exception-safe code, security, and interop.

A Word About the Items

My vision for these items is to provide you with clear and succinct advice
for writing C# software. Some guidelines in the book are universal
because they affect the correctness of a program, such as initializing data
members properly (see Chapter 2). Others are not so obvious and have
generated much debate in the NET community, such as whether to use
ADO.NET DataSets. While I personally believe that using them is a great
timesaver (see Item 41), other professional programmers, whom I highly
respect, disagree. It really depends on what you’re building. My position
comes from a timesaving stance. For others who write a great deal of soft-
ware that transfer information between .NET- and Java-based systems,
DataSets are a bad idea. Throughout the book, I support and have given
justification for all the suggestions I make. If the justification does not
apply to your situation, neither does the advice. When the advice is
universal, I usually omit the obvious justification, which is this: Your
program won’t work otherwise.

Styles and Code Conventions

One difficulty in writing a book about a programming language is that
language designers give real English words a very specific new meaning.
This makes for passages that can be tough to understand: “Develop
interfaces with interfaces” is an example. Any time I use a specific lan-

. guage keyword, it is in the code style. When I discuss general topics with

specific C# concepts, the specific C# topic is capitalized, as in: “Create

About the Contents Xi

Interfaces to represent the interface supported by your classes.” It’s still
not perfect, but it should make many of these passages easier to read.

Many related C# terms are used in this book. When I refer to a member of
type, it refers to any definition that can be part of a type: methods, prop-
erties, fields, indexers, events, enums, or delegates. When only one
applies, I use a more specific term. A number of terms in this book might
or might not already be familiar to you. When these terms first appear in
the text, they are set in bold and defined.

The samples in this book are short, focused sections of code that are
meant to demonstrate the advice of that particular item. They are
designed to highlight the advantages of following the advice. They are not
complete samples to incorporate into your current programs. You cannot
just copy the listings and compile them. I've omitted many details from
each listing. In all cases, you should assume the presence of common

using clauses:

using System;

using System.IO;

using System.Collections;
using System.Data;

When I use less common namespaces, I make sure that you can see the
relevant namespace. Short samples use the fully qualified class names,
and long samples include the less common using statements.

I take similar liberties with code inside the samples. For example, when I
show this:

string sl = GetMessage();

I might not show the body of the GetMessage () routine if it’s not rele-
vant to the discussion. Whenever I omit code, you can assume that the
missing method does something obvious and reasonable. My purpose in
this is to keep us focused on the particular topic. By omitting code that is
not part of that topic, we don’t become distracted. It also keeps each item
short enough that you should be able to finish an item in one sitting.

Regarding C# 2.0

" I say little about the upcoming C# 2.0 release; there are two reasons for
this. First and foremost, most of the advice in this book applies just as

Xil

Introduction

well for C# 2.0 as it does for the current version. Although C# 2.0 is a
significant upgrade, it is built on C# 1.0 and does not invalidate most of
today’s advice. Where the best practices will likely change, I've noted that
in the text.

The second reason is that it’s too early to write the most effective uses of
the new C# 2.0 features. This book is based on the experience I've had—
and the experience my colleagues have had—using C# 1.0. None of us has
enough experience with the new features in C# 2.0 to know the best ways
to incorporate them into our daily tasks. I'd rather not mislead you when
the simple fact is that the time to cover the new C# 2.0 features in an
Effective book has not yet arrived.

Making Suggestions, Providing Feedback, and Getting Book
Updates

This book is based on my experiences and many conversations with col-
leagues. If your experience is different, or if you have any questions or
comments, I want to hear about it. Please contact me via email: wwagner@
srtsolutions.com. I'll be posting those comments online as an exten-
sion to the book. See www. srtsolutions.com/EffectiveCSharp for the

current discussion.

Acknowledgments

Although writing seems like a solitary activity, this book is the product of
alarge team of people. I was lucky enough to have two wonderful editors,
Stephane Nakib and Joan Murray. Stephane Nakib first approached me
about writing for Addison Wesley a little more than a year ago. I was skep-
tical. The bookstore shelves are filled with .NET and C# books. Until C#
2.0 has been around long enough to cover thoroughly, I could not see the
need for another reference, tutorial, or programming book about C# and
NET. We discussed several ideas and kept coming back to a book on C#
best practices. During those discussions, Stephane told me that Scott
Meyers had begun an Effective series, modeled after his Effective C++
books. My own copies of Scott’s three books are very well worn. I’ve also
recommended them to every professional C++ developer I know. His
style is clear and focused. Each item of advice has solid justifications. The
Effective books are a great resource, and the format makes it easy to

Acknowledgments xiii

remember the advice. I know many C++ developers who have copied the
table of contents and tacked it to the cubicle wall as a constant reminder.
As soon as Stephane mentioned the idea of writing Effective C#, I jumped
at the opportunity. This book contains in one place all the advice I've
been giving to C# developers. I am honored to be a part of this series.
Working with Scott has taught me a great deal. I only hope this book
improves your C# skills as much as Scott’s books improved my C++ skills.

Stephane helped pitch the idea of an Effective C# book, reviewed outlines
and manuscripts, and graciously championed the book through the early
writing process. When she moved out of acquisitions, Joan Murray
picked up and shepherded the manuscript through production without
missing a beat. Ebony Haight provided a constant presence as an editorial
assistant through the entire process. Krista Hansing did all the copyedit-
ing, turning programmer jargon into English. Christy Hackerd did all the
work to turn the word documents into the finished book you now hold.

Any errors that remain are mine. But the vast majority of errors, omis-
sions, and unclear descriptions were caught by a wonderful team of
reviewers. Most notably, Brian Noyes, Rob Steel, Josh Holmes, and Doug
Holland made the text you have in front of you more correct and more
useful than the earlier drafts. Also, thank you to all the members of
the Ann Arbor Computing Society, the Great Lakes Area .NET User
Group, the Greater Lansing User Group, and the West Michigan .NET
User Group, who all heard talks based on these items and offered great

feedback.

Most of all, Scott Meyers’ participation had a huge, positive impact on the
final version of this book. Discussing early drafts of this book with him
made me clearly understand why my copies of the Effective C++ books
are so worn. Very little, if anything, escapes his reviews.

I want to thank Andy Seidl and Bill French from MyST Technology Part-
ners (myst-technology.com). I used a secure MyST-based blogsite to
publish early drafts of each item for reviewers. The process was much more
efficient and shortened the cycle between drafts of the book. We’ve since
opened parts of the site for the public so you can see parts of the book in an
online format. See www.srtsolutions.com/EffectiveCSharp for the

online version.

I’ve been writing magazine articles for several years now and I need to
publicly thank the person who got me started: Richard Hale Shaw. He

Xiv

Introduction

gave me (as an untested author) a column in the original Visual C++
Developer’s Journal he helped found. I would not have discovered how
much I enjoy writing without his help. I also would not have had the
opportunity to write for Visual Studio Magazine, C# Pro, or ASPNET Pro

without the initial help he gave.

Along the way, I've been fortunate to work with many wonderful editors
at different magazines. Id like to list them all, but space does not permit
it. One does deserve a special mention: Elden Nelson. I've enjoyed all our
time working together and he has had a strong positive effect on my

writing style.
My business partners, Josh Holmes and Dianne Marsh, put up with my

limited involvement in the company while taking the time to write this
book. They also helped review manuscripts, ideas, and thoughts on items.

Throughout the long process of writing, the guidance of my parents, Bill
and Alice Wagner, to always finish what I start could be the only reason
you are now holding a completed book.

Finally, the most important thanks go to my family: Marlene, Lara, Sarah,
and Scott. Writing a book takes an incredible amount of time from all
those activities we enjoy. And after all this time on the book, their contin-
ued patience has never wavered.

Contents

Chapter 1

Chapter 2

Chapter 3

Introduction

C# Language Elements

Item 1:
Item 2:
Item 3:
Item 4:
ftem 5:
Item 6:
Item 7:
Item 8:
Item 9:

Item 10:
Item 11:

Always Use Properties Instead of Accessible Data Members
Prefer readonly to const

Prefer the is or as Operators to Casts

Use Conditional Attributes Instead of #if

Always Provide ToString()

Distinguish Between Value Types and Reference Types

Prefer Immutable Atomic Value Types

Ensure That 0 Is a Valid State for Value Types

Understand the Relationships Among ReferenceEquals(),
static Equals(),instance Equals(), and operator==
Understand the Pitfalls of GetHashCode ()

Prefer foreach Loops

.NET Resource Management

Item 12:
Item 13:
Item 14:
Item 15:
Item 16:
Item 17:
Item 18:

Prefer Variable Initializers to Assignment Statements
Initialize Static Class Members with Static Constructors
Utilize Constructor Chaining

Utilize using and try/finally for Resource Cleanup
Minimize Garbage

Minimize Boxing and Unboxing

Implement the Standard Dispose Pattern

Expressing Designs with C#

Item 19:
Item 20:

Item 21:
Item 22:
Item 23:

Prefer Defining and Implementing Interfaces to Inheritance
Distinguish Between Implementing Interfaces and
Overriding Virtual Functions

Express Callbacks with Delegates

Define Outgoing Interfaces with Events

Avoid Returning References to Internal Class Objects

vii

12
17
25
31
38
44
51

56
63
70

77
82
84
87
93

100

103

109

117
118

125
129
131
137

Xvi

Contents

Chapter 4

Chapter 5

Chapter 6

Item 24:
Item 25:
Item 26:

Item 27:
Item 28:
Item 29:

Prefer Declarative to Imperative Programming
Prefer Serializable Types

Implement Ordering Relations with IComparable
and IComparer

Avoid ICloneable

Avoid Conversion Operators

Use the new Modifier Only When Base Class Updates
Mandate It

Creating Binary Components

Item 30:
Item 31:
Item 32:
Item 33:
Item 34:

Prefer CLS-Compliant Assemblies
Prefer Small, Simple Functions
Prefer Smaller, Cohesive Assemblies
Limit Visibility of Your Types
Create Large-Grain Web APIs

Working with the Framework

Item 35:
Item 36:
Item 37:
Item 38:
Itemn 39:
Item 40:
Item 41:
Item 42:
Item 43:
Item 44:

Prefer Overrides to Event Handlers

Leverage .NET Runtime Diagnostics

Use the Standard Configuration Mechanism

Utilize and Support Data Binding

Use .NET Validation

Match Your Collection to Your Needs

Prefer DataSets to Custom Structures

Utilize Attributes to Simplify Reflection

Don’t Overuse Reflection

Create Complete Application-Specific Exception Classes

Miscellaneous

Item 45:
Item 46:
Item 47:
Item 48:
Item 49:
Item 50:

Index

Prefer the Strong Exception Guarantee
Minimize Interop

Prefer Safe Code

Learn About Tools and Resources
Prepare for C# 2.0

Learn About the ECMA Standard

142
148

156
163
167

172

177
181
186
190
194
198

205
205
208
213
217
224
229
237
246
253
258

265
265
270
277
281
284
293

295

1 C# Language Elements

Why should you change what you are doing today if it works? The answer
is that you can be better. You change tools or languages because you can
be more productive. You don’t realize the expected gains if you don’t
change your habits. This is harder when the new language, C#, has so
much in common with a familiar language, such as C++ or Java. It’s easy
to fall back on old habits. Most of these old habits are fine. The C# lan-
guage designers want you to be able to leverage your knowledge in these
languages. However, they also added and changed some elements to pro-
vide better integration with the Common Language Runtime (CLR), and
provide better support for component-oriented development. This chap-
ter discusses those habits that you should change—and what you should

do instead.

Item 1: Always Use Properties Instead of Accessible Data
Members

The C# language promoted properties from an ad-hoc convention to a
first-class language feature. If you're still creating public variables in your
types, stop now. If you're still creating get and set methods by hand, stop
now. Properties let you expose data members as part of your public inter-
face and still provide the encapsulation you want in an object-oriented
environment. Properties are language elements that are accessed as
though they are data members, but they are implemented as methods.

Some members of a type really are best represented as data: the name ofa
customer, the x,y location of a point, or last year’s revenue. Properties
enable you to create an interface that acts like data access but still has all
the benefits of a function. Client code accesses properties as though they
are accessing public variables. But the actual implementation uses meth-
ods, in which you define the behavior of property accessors.

