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Preface

As a result of graduate-level adoptions of my earlier two-volume book,
Boundary Value Problems of Mathematical Physics, 1 teceived many con-
structive suggestions from users. One frequent recommendation was to
consolidate and reorganize the topics into a single volume that could be
covered in a one-year course. Another was to place additional emphasis on
modeling and to choose examples from a wider variety of physical applica-
tions, particularly some emerging ones. In the meantime my own research
interests had turned to nonlinear probfems, so that, inescapably, some of
these would also have to be included in any revision. The only way to
incorporate these changes, as well as others, was to write a new book,
whose main thrust, however, remains the systematic analysis of boundary
value problems. Of course some topics had to be dropped and others
curtailed, but I can only hope that your favorite ones are not among them.

My book is aimed at graduate students in the physical sciences, en-
gineering, and applied mathematics who have taken the typical “methods”
course that includes vector analysis, elementary complex variables, and an
introduction to Fourier series and boundary value problems. Why go
beyond this? A glance at modern publications in science and engineering
provides the answer. To the lament of some and the delight of others,
much of this literature is deeply mathematical. I am referring not only to
areas such as mechanics and electromagnetic theory that are traditionally
mathematical but also to relative newcomers to mathematization, such as
chemical engineering, materials science, soil mechanics, environmental
engineering, biomedical engineering, and nuclear engineering. These fields
give rise to challenging mathematical problems whose flavor can be sensed
from the following short list of examples; integrodifferential equations of
neutron transport theory, combined diffusion and reaction in chemical and
environmental engineering, phase transitions in metallurgy, free boundary
problems for dams in soil mechanics, propagation of impulses along nerves
'in biology. It would be irresponsible and foolish to claim that readers of
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viii PREFACE

my book will become instantancons experts in these fields, but they will be
prepared to tackle many of the mathematical aspects of the relevant
literature.

Next, let me say a few words about the numbering system. The book is
divided nto ten chapters. and each chapter is divided into sections.
Equations do not tarry a chapter designation. A reference to, say, equation
(4.32) is to the thirty-second numbered equation in Section 4 of the chapter
you happen to be reading. The same system is used for figures and
exercises, the latter being found at the end of sections. The eXercises, by
the way, are rarely routine and, on occasion, contain substantia) extensions
of the main text. Examples do not carry any section designation and are
numbered consecutively within a section, even though there may be
separate clusters of examples within the same section. Some theorems have
numbers and others do not; those that do are numbered in a sequence
within a section—Theorem 1, Theorem 2, and so on.

A brief description of the book’s contents follows. No attempt is made
to mention all topics covered; only the general thread of the development
1s indicated.

Chapter O presents background material that consists principally of
careful derivations of several of the equations of mathematical physics.
Among them are the equations of heat conduction. of neutron transport,
and of vibrations of rods. In the last-named derivation an effort is made to
show how the usual linear equations for beams and strings can be regarded
as first approximations to nonlinear problems. There are also two short
sections on modes of convergence and on Lebesgue integration.

Many of the principal ideas related to boundary value problems are
introduced on an intuitive level in Chapter 1. A boundary value problem
(BVP, for 'short) consists of a differential equation Lu=f with boundary
conditions of the form Bu=h. The pair (f,h) is known collectively as the
data for the problem, and u is the response to be determined. Green’s
funetion is the response when f represents a concentrated unit source and
hA=0. In terms of Green’s function, the BVP with arbitrary data can be
solved in a form that shows clearly the dependence of the solution on the
data. Various examples are given, including some multidimensional ones,
some involving interface conditions, and some initial value problems. The
useful notion of a well-posed problem is discussed, and a first look is taken
at maximum principles for differential equations.

Chapter 2 deals with the theory of distributions, which provides a
rigorous mathematical framework for singular sources such as the point
charges, dipoles, line charges, and surface layers of electrostatics. The
notion of response to such sources is made precise by defining the
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distributional solution of a differential equation. The related concepts of
weak solution, adjoint, and- fundamental solution are also introduced.
Fourier series and Fourier transforms are presented in both classical and
distributional settings.

Chapter 3 returns to a more detailed study of one-dimensional linear
boundary value problems. To an equation of order p there are usnally
associated p independent boundary conditions involving derivatives of

. order less than p at the endpoints ¢ and b of a bounded interval. If the
corresponding BVP with 0 data has only the trivial solution, then the BVP
with arbitrary data has one and only one solution which can be expressed
in terms of Green’s function. If, however, the BVP with 0 data has a
nontrivial solution, certain solvability conditions must be satisfied for the
BVP with arbitrary data to have a solution. These statements are for-
mulated precisely in an alternative theorem, which recurs throughout the
book in various forms. When the BVP with 0 data has a nontrivial
solution, Green’s function cannot be constructed in the ordinary way, but
some of its properties can be salvaged by using a modified Green’s
function, defined in Section 5.

Chapter 4 begins the study of Hilbert spaces. A Hilbert space is the
proper setting for many of the linear problems of applied analysis. Though
its elements may be functions or abstract “vectors,” a Hilbert space enjoys
all the algebraic and geometric properties of ordinary Euclidean space. A
Hilbert space is a linear space equipped with an inner product that induces’
a natural notion of distance between elements, thereby converting it into a
metric space which 1s required to be complete. Some of the important
geometric propetties of Hilbert spaces are developed, including the projec-
tion theorem and the existence of orthonormal bases for separable spaces..
Metric spaces can be useful quite apart from any linear structure. A
contraction is a transformation on a metric space that uniformly reduces
distances between pairs of points. A contraction on a complete metric
space has a unique fixed point-that can be calculated by iteration from any
initial approximation. Examples demonstrate how to use these ideas to
prove uniqueness and constructive existence for certain classes of nonlin-
ear differential equations and integral equations.

Chapter 5 examines the theory of linear operators on a separable Hilbert
space, particularly integral and differential operators, the latter being
unbounded operators. The principal problem of operator theory is the
solution of the equation Au=f, where A is a linear operator and f an
clement of the space. A thorough discussion of this problem leads again to
adjoint operators, solvability conditions, and alternative theorems. Addi-
tional insight is obtained by considering the inversion of the equation
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Au—Au = f, which leads to the idea of the spectrum, a generalization of the
more familiar concept of eigenvalue. For compact operators (which in-
. clude most integral operators) the inversion problem is essentially solved
by the Riesz-Schauder theory of Section 7. Section 8 relates the spectrum
of symmetric operators to extremal principles for the Rayleigh quotient.
Throughout, the theory is illustrated by specific examples.

In Chaptér 6 the general ideas of operator theory are specxahzed to
integral equations. Integral equations are particularly important as alterna-
tive formulations of boundary value problems. Special emphasis is given to
Fredholm equations with symmetric Hilbert-Schmidt kernels. For the
corresponding class of operators, the nonzero eigenvalues and associated
eigenfunctions can be characterized through successive extremal principles,
and it is then possible to give a complete treatment of the inhomogeneous -
equation. The last section discusses the Ritz procedure for estimating
eigenvalues, as well as other approximation methods for eigenvalues and
elgenfunctwns There is also a brief introduction to mtegrodxffcrenual
operators in Exercises 5.3 to 5.8. ‘

Chapter 7 extends the Sturm-Liouville theory of second-order ordinary
differential equations to the case of singular endpoints. It is shown,
beginning with the regular case, how the necessarily discrete spectrum can
be constructed from Green’s function. A formal extension of this relation-
ship to the singular case makes it possible to calculate the spectrum, which
mayr now be partly continuous. The transition from regular to singular is
analyzed rigorously for equations of the first order, but the Weyl classifica-
tion for second-order equations is given without proof. The eigenfunction
expansion in the singular case can lead to integral transforms such as
Fourier, Hankel, Mellin, and Weber. It is shown how to use these trans-
forms and their inversion formulas to solve partial differential equations in
particular geometries by separation of variables.

Although 'partial differential equations have appeared frequently as
examples in earlier chapters, they are treated more systematically in
Chapter 8. Examination of the Cauchy problem-—the appropriate generali-
zation of the initial value problem to higher dimensions—gives rise to a
natural classification of partial differential equations into hyperbolic,
parabolic, and elliptic types. The theory of characteristics for hyperbolic
equations is introduced and applied to simple linear and nonlinear exam-
ples. In the second and third sections various methods (Green’s functions,
Laplace transforms, images, etc.) are used to solve BVPs for the wave
equation, the heat equation, and Laplace’s equation. The simple and
double layers of potential theory make it possible to reduce the Dirichlet
problem to an integral equation on the boundary of the domain, thereby
providing a rather weak existence proof. In Section 4 a stronger existence
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proof is given, using variational principles. Two-sided bounds for some
functionals of physical interest, such as capacity and torsional rigidity, are
obtained by introducing complementary principles. Another application
involving level-line analysis is also given, and there is a very brief treat-
ment of unilateral constraints and variational inequalities.

Finally, in Chapter 9, 2 number of methods applicable 10 nonlinear
problems are developed. Section 1 points out some of the features that
distinguish nonlinear problems from linear ones and illustrates these dif-
ferences through some simple examples. In Section 2 the principal qualita-
tive results of branching theory (also known as bifurcation theory) are
presented. The phenomenon of bifurcation is understood most casily in
terms of the buckling of a rod under compressive thrust. As the thrust is
increased beyond a certain critical value, the state of simple compression
gives way to the buckled state with its appreciable transverse deflection.
Section 3 shows how a variety of linear problems can be handled by
perturbation theory (inhomogeneous problems, eigenvalue problems,
change in boundary conditions, domain perturbations). These techniques,
as well as monotone methods, are then adapted to the solution of nonlin-
ear BVPs. The concluding section discusses the possible loss of stability of
the basic steady state when an underlying parameter is allowed to vary.

I have already acknowledged my debt to the students and teachers who
were kind enough to comment on my earlier book. There are, however,
two colleagues to whom 1 am particularly grateful: Stuart Antman, who
generously contributed the ideas underlying the derivation of the equations
for rods in Chapter 0, and W. Edward Olmstead, who suggested some of
the examples on contractions in Chapter 4 and on branching in Chapter 9.

IVAR STAKGOLD

Newark, Delaware
April 1979
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Preliminaries

As its name and number indicate, this chapter contains background
material that has no precise place in the systematic development beginning
with Chapter 1. Many readers may prefer to look over this preliminary
material rather casually and then refer to it again as need arises.

The principal purpose here is to give fairly careful derivations of some of
the equations of mathematical physics that will be studied extensively in
the rest of the book. The attention paid to modeling in the present chapter
could, regrettably, not be sustained in subsequent ones. Readers who are
particularly interested in this aspect' of applied mathematics are en-
~ couraged to consult the books by Lin and Segel, by Aris (1978), and by
Segel. ‘

Two other isolated sections of a mathematical nature complete the
chapter. One section reviews some fundamental ideas on convergence. The
other presents a short treatment of Lebesgue integration. Although only a
few essential properties of this integral are needed in the book, it seemed
worthwhile to take a few pages to explain its construction. These limited
goals made it convenient to use Tonelli’s approach as presented in Silver-
man’s fine translation of Shilov’s book.

A few words about terminology are in order. R, stands for n-dimen-
sional Euclidean space. The definitions below are given for R; but are
easily modified for R,. A point in R; is identified by its position
vector x=(x,x,x3), where x;,x,,x, are Cartesian coordinates; |x|=
(xf+ x4 x3)'/?, where the nonnegative square root is understood; ax
stands for a volume element dx, dx;dx;. In later chapters the distinguishing
notation for vectors is dropped.

An open ball of radius a, certered at the origin, is the set of points x such
that |x| <a. The set |x| <a is a closed ball, and the set |x|=a is a sphere. In
R, the words disk and circle are often substituted for ball and sphere,
respectively. An open set © has the property that, whenever x €, so does
some sufficiently small ball with center at x. A point x belongs to the

1



2 PRELIMINARIES

boundary T of an open set @ if x is not in © but if every open ball centered
at x contains a point of 2. The closure & of Q is the union of © and T.
These ideas are best illustrated by an egg with a very thin shell. The
interior of the egg is an open set £, the shell is T, and the egg with shell is
©2. An open set Q is connected if each pair of points in £ can be connected .
by a curve lying entirely in . A domain is an open connected set. Thus an
open ball is a domain, but the union of two disjoint open balls is not.
The symbol = means “set equal to.” It is occasionally used to define a
new expression. For instance, in writing D=dS /dx we are defining D as
dS/dx which, in turn, is presumably known from earlier discussion.

The terms
inf f(x), sup f(x)
x€4 xeR

stand for the infimum (greatest lower bound) and supremum (least upper
bound) of the real-valued function f on . For instance, if £ is the open
ball in R, with radius @ and center at the origin, and f(x)=|x|, then

inf f(x)=0, sup f(x)=a, *
xXEQ xeD

even though the supremum is not attained for any element x in Q.

%

1. HEAT CONDUCTION

We shall consider the flow of heat in an inhomogeneous medium occupy- -
ing the three-dimensional domain € with boundary I. The temperature
u(x, 1) is a scalar function defined for x in § and a time interval ¢, <t <t,.
In the general situation there will exist within 2 cértain sources of heat,
known as body sources, whose nature will be specifiéd more precisely later.
The discussion of boundary and initial conditions may safely be postponed
since they do not affect internal heat balances.

Let R be an arbitrary portion of @ with boundary B. It is vital that R be
allowed to range through a variety of subdomains of ©, so that we can
obtain sufficient information for our purposes. A heat balance over R for
the time interval (¢,1+ df) gives

‘ (1.1) heat produced by body sources
=rise in heat content + outflow of heat through B.

We now make two physical assumptions that have successfully
weathered the passage of time:

1. If a material element of volume 4x is raised from the temperature u
to the temperature u + du, its heat content is raised by Cdudx, where C is
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the specific heat (which may depend on ) in calories per degree per cubic
centimeter.

2. Fourier’s law: Consider an element of surface with normal n and
area 4S. The amount of heat flowing in time df across this element is

dtdSn-(—kgradu)= —dldSk?,
n

where k is the thermal conductivity (which may depend on ) measured in

calories per second per centimeter per. degree. The vector — kgradu is

known as the heat flow vector, the minus sign being consistent with the fact

that heat flows in the direction of decreasing temperature.

Since our medium may be inhomogeneous, both C and k may depend
on x as well as on u. If we let du= du(x, ) stand for the rise in temperature
at x in the time from ¢ to 7+ dr, the change in heat content of R in that
time is given by

(12) fR Cdu dx,

and the heat flowing outward through B by
ou ..
(1.3) —dthdeS,

where n is the outward normal to B.

In the absence of sources that liberate heat instantaneously in time, we
can write the heat produced by body sources as Fg(f)d?, where Fg(t) is the
rate, in calories per second, at which body sources generate heat in the
whole of R. After division by d¢ and passage to the limit, (1.1) takes the
form

(14) FR(t)=LC(X,u)%dx-Lk(x,u)%dS,

which we regard as the primary equation describing heat conduction. From
(1.4) we can specialize in different directions, one of which leads to the
familiar but more restrictive partial differential equation of heat conduc-
tion.

By excluding spatially “singular” sources (those that are concentrated at
points, on curves, or on surfaces), we can write

(15) Fr(t)= fg f(x1)dx,
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where f(x, 1), measured in calories per second per cubic centimeter, is the
volume rate at which body sources produce heat at (x,#). The correspond-
ing temperature u(x, {) will then be smooth enough so that the divergence
theorem can be used on the surface integral in (1.4) to give

(1.6) fk[c%‘f —div(kgradu)—f(x,z)]dx=

which holds for every portion R of {. The integrand is a function of x and
t defined for x€Q and ¢, <?<t,. Assuming that this function is continu-
ous, we claim it must vamsh identically. Indeed, if the function differed
from 0 at a point x at time ¢, there would exist a nexghborhood R of that
point such that the function would be of one sign throughout R at time ¢.
The integral in (1.6) would then fail to vanish for that particular R and .
We therefore conclude that ‘

(1.7) C%—l:-—div(kgradu)=f, XER, 1,<t<ty,

which is the usual equation of heat conduction. If C and k are constants,
the equation reduces to

du f
(1.8) m alAu= Yol

where a=k/C is the thermal diffusivity in square centimeters per second,
and A=divgrad is the Laplacian operator, which has the familiar form

62 62 32

2 2 2
dx{ dx5;  Ox3
in Cartesian coordinates.

Remark. In the simplest case the production term f is prescribed as a
function of x and ¢. In that case (1.8) is a linear inhomogeneous equation.
There are many problems, however, in which the production term also
depends on the unknown temperature u. If, for instance, a chemical
reaction takes place which liberates heat, it is reasonable to assume that the
rate at which heat is released is given by the Arrhenius law:

19 ‘ AeB/4,
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where A and B are known positive constants. We must therefore substitute
. f(x, t)=Ae_B/u(x»’)

on the right sides of (1.7) and (1.8), so that these become nonlinear partial
differential equations.

In steady-state heat conduction the temperature u(x) is independent of
time, and (1.4) reduces to

(1.10) Afk—dS Fy,

where Fp is the steady heat inpilt per unit time over the domain R
bounded by 5. If these body sources stem from a volume’ density f(x), we
can use reasoning similar to that yielding (1.7) to conclude that

(1.11) —div(kgradw)=f(x), xER.

To show that (1.10) is indeed more general than (1.11), consider the case
of a single source concentrated at x=§ and generating p calories per
second. Then (1.10) tells us that

0 iffisnotinR
1.12 — ’
(1.12) fk as= {p if £is in R.

By a now familiar argument, the first line shows that —div(k gradu)=0 for
x#¢£. By specializing the second line to a small sphere centered at £, it is
possible to extract precise information on the nature of the singularity in
at £ (see Section 4, Chapter 1, for instance).

Whenever there is possible ambiguity in the interpretation of (1.11), it is
wise to return to the integral formulation (1.10) for guidance. As another
example, suppose that Q consists of two media scparated by an interface o.
The thermal conductivity k is continuous with the possible exception of a
jump discontinuity across o. Assuming that there are no prescribed sources
or any heat losses (caused by films or imperfect fitting) on the interface, we
can apply (1.10) to a thin pillbox straddling the interface with its bases
parallel to o. It is permissible to neglect the contribution from the lateral
surface of the pillbox to obtain

ou du
(1.13) < ko o, k,—%——
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where the subscripts + and — denote the two sides of o. Equation (1.13)
and the continuity of 4 comprise the interface conditions (see also Section
4, Chapter 1). ‘

Despite their usefulness (1.10) and (1.4) are not general enough to treat
certain important idealized singularities. For instance, a dipole located at ¢
would apparently go undetected in (1.10) since F, =0 whether §isin R or
outside R. We shall see in Chapter 2 that such problems are best handled
within the theory of distributions.

Boundary and Initial Conditions

Equation (1.7) alone does not determine the temperature u(x, 7). We must
in addition give the initial temperature u(x,r;) and a boundary condition
on I' for ¢, <t<t,. This boundary condition is usually of one of the
following three types:

()  temperature 4 prescribed on Q for ¢, <z <1,

(1.14) (i)  heat flow — k%% prescribed on T for ¢, <1 <1,,

(iif) —-kg—: =au on I for ¢, <1 <1,

For & >0 the last condition is Newton’s law of cooling, which characterizes
radiation into a surrounding medium at uniform temperature [which is
then taken to be the datum of temperature in (1.7)]. Thus heat is lost from
the surface of the body at a rate proportional to the difference between the
surface temperature and the surrounding temperature. If a <0, condition
(iti) states that the larger the boundary temperature the more heat enters
the body, a circumstance which obviously tends to increase the internal
temperature. Newton’s law of cooling can be regarded as an approxima-
tion to Stefan’s radiation law, which has a term Bu? on the right side of
(iii). It is of course possible to have an inhomogeneous version of (i11) if the
surface is simultaneously heated by prescribed heat flow.

One-Dimensional Problems

Equation (1.7) can sometimes be reduced to an equation involving deriva-
tives in only one space direction. Let (x,, x,, x,) be Cartesian coordinates;
we want to describe classes of problems in which u depends only on x,
and r. ‘

1. Suppose £ is the slab 0<x, <a, — 00 <x,, x,< 0. Assume that the
source term depends only on x, and ¢, that thé boundary conditions on the
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faces of the slab depend only on ¢, that the initial temperature depends
only on Xy, and that k and C depend only on x, and u. On physical
grounds it is clear that heat flows only in the x, direction, so that « will be
a function of x, and 7 alone. The differential equation (1.7) then becomes

(1.15) C%—-ai( a“) =f(xp8),  0<x,<a, t,<t<t,

The solution u(x,,7) of the boundary-initial value problem associated with
(1.15) obviously also satisfies the related boundary-initial value problem
associated with (1.7). If we can prove uniqueness in the latter case, we will
have shown that u(x,,?) is in fact the desired solution of (1.7).

2. Let Q be a cylindrical rod (of arbitrary cross section) whose axis
coincides with the segment 0<x, <a. In addition to the assumptions in
part 1, let us suppose that the lateral surface of the rod is insulated. We may
imagine the rod as having been punched out of the slab of part 1. Since the
temperature in the slab is independent of x, and x;, it must satisfy the
. condition 3u/3dn=0 on the lateral surface of the cylinder, which is the
criterion of insulation. Thus the flow in the rod is one-dimensional, and
(1.15) holds as before. In particular, the steady-state equation is

(1.16) —gi—l(k%)=f(x,), 0<x,<a,

where f (x;) 1s the volume density of sources. If 4 is the cross-sectional area
of the rod, we can write f(x,)= =f(x,)/ A, where f(x,) is the source densxty
per unit length of the rod. Equation (1.16) becomes

| P
(1.17) _Ex—l(kﬁu,%f(:l)’ 0<x,<a

2. DIFFUSION

With a different interpretation of the terms, (1.4) and (1.7) also govern the
concentration c(x,f) of a substance diffusing through some medium. The
energy balance (1.1) is replaced by a mass balance of the substance in
question over R for the time interval (7,7 + d¥):

(2.1) mass created by body sources
= increase of mass+ outflow of mass through B.



