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Preface

The guiding principle in this book is to use differential forms as an aid in
exploring some of the less digestible aspects of algebraic topology. Accord-
ingly, we move primarily in the realm of smooth manifolds and use the
de Rham theory as a prototype of all of cohomology. For applications to
homotopy theory we also discuss by way of analogy cohomology with
arbitrary coefficients.

Although we have in mind an audience with prior exposure to algebraic
or differential topology, for the most part a good knowledge of linear
algebra, advanced calculus, and point-set topology should suffice. Some
acquaintance with manifolds, simplicial complexes, singular homology and
cohomology, and homotopy groups is helpful, but not really necessary.
Within the text itself we have stated with care the more advanced results
that are needed, so that a mathematically mature reader who accepts these
background materials on faith should be able to read the entire book with
the minimal prerequisites.

There are more materials here than can be reasonably covered in a
one-semester course. Certain sections may be omitted at first reading with-
out loss of continuity. We have indicated these in the schematic diagram
that follows.

This book is not intended to be foundational; rather, it is only meant to
open some of the doors to the formidable edifice of modern algebraic
topology. We offer it in the hope that such an informal account of the
subject at a semi-introductory level fills a gap in the literature.

It would be impossible to mention all the friends, colleagues, and
students whose ideas have contributed to this book. But the senior
author would like on this occasion to express his deep gratitude, first
of all to his primary topology teachers E. Specker, N. Steenrod, and

vil



viii Preface

K. Reidemeister of thirty years ago, and secondly to H. Samelson, A. Shapiro,
I. Singer, J.-P. Serre, F. Hirzebruch, A. Borel, J. Milnor, M. Atiyah, S.-s.
Chern, J. Mather, P. Baum, D. Sullivan, A. Haefliger, and Graeme Segal,
who, mostly in collaboration, have continued this word of mouth education
to the present; the junior author is indebted to Allen Hatcher for having
initiated him into algebraic topology. The reader will find their influence if
not in all, then certainly in the more laudable aspects of this book. We also
owe thanks to the many other people who have helped with our project: to
Ron Donagi, Zbig Fiedorowicz, Dan Freed, Nancy Hingston, and Deane
Yang for their reading of various portions of the manuscript and for their
critical comments, to Ruby Aguirre, Lu Ann Custer, Barbara Moody, and
Caroline Underwood for typing services, and to the staff of Springer-Verlag
for its patience, dedication, and skill.

For the Revised Third Printing

While keeping the text essentially the same as in previous printings, we have
made numerous local changes throughout. The more significant revisions
concern the computation of the Euler class in Example 6.44.1 (pp. 75-76), the
proof of Proposition 7.5 (p. 85), the treatment of constant and locally con-
stant presheaves (p. 109 and p. 143), the proof of Proposition 11.2 (p. 115), a
local finite hypothesis on the generalized Mayer—Vietoris sequence for com-
pact supports (p. 139), transgressive elements (Prop. 18.13, p. 248), and the
discussion of classifying spaces for vector bundles (pp. 297-300).

We would like to thank Robert Lyons, Jonathan Dorfman, Peter Law,
Peter Landweber, and Michael Maltenfort, whose lists of corrections have
been incorporated into the second and third printings.

RaouL Bott
LorinGg Tu
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Introduction

The most intuitively evident topological invariant of a space is the number
of connected pieces into which it falls. Over the past one hundred years or
so we have come to realize that this primitive notion admits in some sense
two higher-dimensional analogues. These are the homotopy and cohomology
groups of the space in question.

The evolution of the higher homotopy groups from the component con-
cept is deceptively simple and essentially unique. To describe it, let ng(X)
denote the set of path components of X and if p is a point of X, let ny(X, p)
denote the set 7o(X) with the path component of p singled out. Also, corre-
sponding to such a point p, let Q, X denote the space of maps (continuous
functions) of the unit circle {z € C : |z] = 1} which send 1 to p, made into a
topological space via the compact open topology. The path components of
this so-called loop space Q, X are now taken to be the elements of 7,(X, p):

nl(X, P) = nO(QpX’ I;)'

The composition of loops induces a group structure on n,(X, p) in which
the constant map p of the circle to p plays the role of the identity; so
endowed, 7,(X, p) is called the fundamental group or the first homotopy
group of X at p. It is in general not Abelian. For instance, for a Riemann
surface of genus 3, as indicated in the figure below:



b) Introduction

n,(X, p) is generated by six elements {x,, x,, x3, ¥1, 2, ¥3} subject to the
single relation ‘

3
H[xi’ yl] = 1,
i=1

where [x,, y,] denotes the commutator x,y,x; !y, ! and 1 the identity. The
fundamental group is in fact sufficient to classify the closed oriented
2-dimensional surfaces, but is insufficient in higher dimensions.

To return to the general case, all the higher homotopy groups n,(X, p)
for k > 2 can now be defined through the inductive formula:

nk+l(X’ p) = ﬂk(QpX’ p)

By the way, if p and p’ are two points in X in the same path component,
then

nk(X’ P) > 7tk(Xs p')’

but the correspondence is not necessarily unique. For the Riemann surfaces
such as discussed above, the higher n,’s for k > 2 are all trivial, and it is in
part for this reason that =, is sufficient to classify them. The groups =, for
k = 2 turn out to be Abelian and therefore do not seem to have been taken
seriously until the 1930’s when W. Hurewicz defined them (in the manner
above, among others) and showed that, far from being trivial, they consti-
tuted the basic ingredients needed to describe the homotopy-theoretic
properties of a space.

The great drawback of these easily defined invariants of a space is that
they are very difficult to compute. To this day not all the homotopy groups
of say the 2-sphere, i.e., the space x? + y* + z? = 1 in R’, have been com-
puted! Nonetheless, by now much is known concerning the general proper-
ties of the homotopy groups, largely due to the formidable algebraic tech-
niques to which the *cohomological extension” of the component concept
lends itself, and the relations between homotopy and cohomology which
have been discovered over the years.

This cohomological extension starts with the dual point of view in which
a component is characterized by the property that on it every lacally con-
stant function is globally constant. Such a component is sometimes called a
connected component, to distinguish it from a path component. Thus, if we
define H%(X) to be the vector space of real-valued locally constant functions
on X, then dim H°(X) tells us the number of connected components of X.
Note that on reasonable spaces where path components and connected
components agree, we therefore have the formula

cardinality mo(X) = dim HO(X).

Still the two concepts are dual to each other, the first using maps of the unit
interval into X to test for connectedness and the second using maps of X
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into R for the same purpose. One further difference is that the cohomology
group H°(X) has, by fiat, a natural R-module structure.

Now what should the proper higher-dimensional analogue of H %(X) be?
Unfortunately there is no decisive answer here. Many plausible definitions
of H*(X) for k > 0 have been proposed, all with slightly different properties
but all isomorphic on “reasonable spaces”. Furthermore, in the realm of
differentiable manifolds, all these theories coincide with the de Rham
theory which makes its appearance there and constitutes in some sense the
most perfect example of a cohomology theory. The de Rham theory is also
unique in that it stands at the crossroads of topology, analysis, and physics,
enriching all three disciplines.

The gist of the “de Rham extension” is comprehended most easily when
M is assumed to be an open set in some Euclidean space R", with coordi-

nates X, ... ,x,. Then amongst the C* functions on M the locally constant
ones are precisely those whose gradient
o
d = ~ d i
=2 55 dx

vanishes identically. Thus here H°(M) appears as the space of solutions of
the differential equation df = 0. This suggests that H (M) should also
appear as the space of solutions of some natural differential equations on
the manifold M. Now consider a 1-form on M:

9=z a; dxi,

where the a;’s are C* functions on M. Such an expression can be integrated
along a smooth path 7, so that we may think of 8 as a function on paths y:

'yr—«»J 6.
»

It then suggests itself to seek those # which give rise to locally constant
functions of y, i.e., for which the integral _[, 0 is left unaltered under small
variations of y—but keeping the endpoints fixed! (Otherwise, only the zero
1-form would be locally constant.) Stokes’ theorem teaches us that these
line integrals are characterized by the differential equations:
2—2 — g—ii =0 (written d0 = 0).

On the other hand, the fundamental theorem of calculus implies that
f, df = f(Q) — f(P), where P and Q are the endpoints of y, so that the
gradients are trivally locally constant.

One is here irresistibly led to the definition of H'(M) as the vector space
of locally constant line integrals modulo the trivially constant ones. Similarly
the higher cohomology groups HM) are defined by simply replacing line
integrals with their higher-dimensional analogues, the k-volume integrals.
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The Grassmann calculus of exterior differential forms facilitates these exten-
sions quite magically. Moreover, the differential equations characterizing
the locally constant k-integrals are seen to be C® invariants and so extend
naturally to the class of C* manifolds.

Chapter I starts with a rapid account of this whole development, as-
suming little more than the standard notions of advanced calculus, linear
algebra and general topology. A nodding acquaintance with singular hom-
ology or cohomology helps, but is not necessary. No real familiarity with
differential geometry or manifold theory is required. After all, the concept of
a manifold is really a very natural and simple extension of the calculus of
several variables, as our fathers well knew. Thus for us a manifold is essen-
tially a space constructed from open sets in R" by patching them together in
a smooth way. This point of view goes hand in hand with the “com-
putability” of the de Rham theory. Indeed, the decisive difference between
the m,’s and the H"s in this regard is that if a manifold X is the union of
two open submanifolds U and V:

X=UulVl,

then the cohomology groups of U, V, U n ¥, and X are linked by a much
stronger relation than the homotopy groups are. The linkage is expressed
by the exactness of the following sequence of linear maps, the Mayer—
Vietoris sequence:

k+1
C—‘ H* " (X)— "

HYX)— HYU)@ HYV) — HYU ",
- *

— H" YU n VD

0— H(X)— -

starting with k =0 and extending up indefinitely. In this sequence every
arrow stands for a linear map of the vector spaces and exactness asserts
that the kernel of each map is precisely the image of the preceding one. The
horizontal arrows in our diagram are the more or less obvious ones induced
by restriction of functions, but the coboundary operator d* is more subtle
and uses the existence of a partition of unity subordinate to the cover
{U, V} of X, that is, smooth functions p, and p, such that the first has
support in U, the second has support in V, and py + p, =1 on X. The
simplest relation imaginable between the H*s of U, V, and U U V would of
course be that H* behaves additively; the Mayer—Vietoris sequence teaches
us that this is indeed the case if U and V are disjoint. Otherwise, there is a
geometric feedback from HXU n V) described by d*, and one of the hall-
marks of a topologist is a sound intuition for this d*.

The exactness of the Mayer—Vietoris sequence is our first goal once the
basics of the de Rham theory are developed. Thereafter we establish the



