— — . — .

PEARSON

—{#E lHScrumit 22z

Agile Software Development
with Scrum

i

blue

ave
%k{

Blue

Color Test

[(£] Ken Schwaber, Mike Beedle 2

| e

English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED
and TSINGHUA UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Agile Software Development with Scrum, 1* Edition by
Ken Schwaber and Mike Beedle, Copyright © 2002

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Prentice Hall.

This edition is authorized for sale and distribution only in the People’s Republic of China
(excluding the Special Administrative Region of Hong Kong, Macao SAR and Taiwan).
AP i Pearson Education Inc. ¥4 #EH A% B R E T .

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macao SAR).

R THEARITMEZEN AEFEPEES, ®ITRATBX A EEEX) 88
KIAT

JEAFRRBURE R AREES BT 01-2003-8777 5

KA. BEIw R
AFHEMH Pearson Education (154 38 HAREHR) MABHMRE, TIREETBIHE.

EBERES B (CIP) 317

WEERMG AR [Scrum LLFE/(3E)HE FLIH(Schwaber, K.), (£)th #(Beedle, M.)%.
—RIER, —Jbnt: EERFHRE, 20044

FBIEX: Agile Software Development with Scrum

ISBN 7-302-08154-9

L .. I OR... Ot... IL ®EFR—HEL V. TP311.52

P ERR A E 0 CIP BT (2004) 013348 5

H O & Bt M hb JEREEKFEERRE
hitp://www.tup.com.cn B % 100084
FEHL: 010-6277 0175 KFRE: 010-6277 6969

HITmIE: THELE HEBREK

Hmgit: LHE

ED Rl &. WHEXFEORT

ERCNIEY Jiwe i

BB E SO R AT

160X230 EJ 3. 10.75
2004 FE 4 A 1R 20045 4 A% 1 IKENRY
ISBN 7-302-08154-9/TP « 5892

1~3000

25.00 7T

o
i

-
3i

BT S H W
SEME Nk

X FF

“THEaTLLE, THEBNZE—MHEMNAER.” B2, AEEF
SRIRAYIXFARIE, XX FRERHEENEES. BTHBARS%
HBZ—.

R ERX 10 FRBHTNEEZ —. BIIELmErsa st
H XP. Adaptive. Crystal Clear LA RUP %%, BAIEE, SEBB(Agile
Alliance) &AL X —BEBUI TH W LURF ZIEERM. maARK
BAEENER. RIMBER TR TFIEFEOBRWRER . BRINE
BT R BESFEIRENR AP, Bt R,

X FE H A, Ken Schwaber H1 Mike Beedle .14 % T Scrum
4. Scrum B—AETLBREROBERGTF Ry, @idas, fRa
CAT MR BB 5 vE R WA R A s BT LABS R 33K AR xR o vE BT B B9 %
H AU T RER RIOAFF RIXFH S F B I E B RIRE ST HER T
SERIRE MR AT T RBEH ABER FEERAXMH T, 4
BWRTAREERAXF G ARSI TH 2 8, =R i s
B RIS T RS, mEmIIKFEESECHIEEE,

EREBHES, BB Mike Hl Ken EAEMAKLT . iF 20 3%k,
AT —ERIERERG T A ER. Mike B2 BT F LB EHEE,
HHEE—FKIEERDWREEHAT . Mike S T S KITERE,
fbSnEA 44T, HAEA AT . Ken BRNY A= I i k2543 it) 28 5 8 4tk 5ot
BAEX, e SXFFFRT —FBAER 5, XM= T L E sl — e TR
ORGSR REETHT AL GTFRMYE. Ken 518, 48
BEK, XERHIBRALGBLBETHOER., AT, XA ERELE
EBHEIR—NEFE. Ken B ELRNEEB, hELSBPH+A
T B BB\ T b T 3 H bR .

EBRABELHE. RHELE. HETTUREFERFEN. TibR
BRTH—FM, XBEHETURHREFK, WAMA Scrum SBHIME
BT A 3 R A 3%

WMREDATE—ANRE, HERRA—EEN T UEBR, A
BEMALGRREEE, BARNZE—ZES. ZBBETEREGSS
B M TR IR I — R AL

Robert C. Martin

Foreword

“Work can and should be an ennobling experience.” So begins Scrum -
Agile Software Development, one of the sanest and most practical books on
agile software processes.

Software process is one of the hot topics of this decade. We’ve seen
processes like XP, Adaptive, Crystal Clear, RUP, etc. We’ve seen the for-
mation of the Agile Alliance; a group of experts dedicated to the promotion
of people-oriented software processes that work without getting in the way.
We've seen the creation of a commercial product based upon nothing but
process. And we’ve seen dozens, if not hundreds, of books, lectures, classes,
and articles extolling the virtues of one process or another.

In the midst of this hubbub, Ken Schwaber and Mike Beedle bring
us Scrum. Scrum is an agile software development method with a proven
track record. In this book you will read how the method was created, and
some stories of the projects that made use of it. You’'ll read about how
the authors battled to create a method that helped them get projects done
in the presence of rapidly changing requirements. You'll read about what
worked and what didn’t, the problems they had, and the way they solved
them. You’ll read about how you can adapt their work to your particular
needs.

Mike and Ken are uniquely qualified to author this book. Both have
been active in the software industry for decades. Mike has been a man-
ager of many software projects, and runs a successful software consultancy.
Mike has fought the process battles many times. He knows what works and
what doesn’t. Ken has been involved with software process for a large por-
tion of his career. He defined and built a software product that automated
heavyweight software processes and created the methodology automation
industry. From this experience he learned that such processes were not
amenable to creating software in real market environments. But that’s a
story you can read in the book. Ken is a well-known management consul-
tant who has helped dozens of project teams reach their goals.

This is a book for executives, software managers, project leaders, and
programmers. It describes, in no uncertain terms, how each of these roles
can apply the simple but effective principles and techniques of Scrum.

If you have to get a project done, and you want to use a process that
helps you when you need help, and gets out of the way when you don’t, then
you should read this book. It is liable to be the catalyst of an ennobling
experience.

Robert C. Martin

ii

RO L = P— 0.

Foreword

When I finished at my grammar school at 18 I spent a year working
in industry before going to University. My career direction at the time
was electrical engineering, and in my year I learned a great deal about the
engineering approach to building things. When I left university and entered
the world of software development I was attracted to graphical modeling
methodologies, because they helped put engineering discipline into software
development.

At the heart of the engineering approach is a separation of design
and construction, where construction is the larger part of the job and is a
predictable process. Over time I began to find that this separation wasn’t
really useful for my software work. Doing the separation required too many
tasks that didn’t seem to really contribute to producing software. Further-
more, the construction part of the task wasn’t really that predictable, and
the design portion was much longer than the engineering approach assumed.

In Chapter 2 Ken describes a particular moment that brought this
question home for him, when he spend time with DuPont’s process en-
gineering experts. There he learned the difference between defined and
empirical processes, and realized that his software development needed to
be controlled using an empirical approach.

We aren’t the only ones who've been asking these questions about
the nature of software development. Over the last few years there’s been
increasing activity in the area of what is now called Agile Methodologies, a
new breed of software processes which are based on an empirical approach
to controlling a project.

And software projects do need to be controlled. For many people,
moving away from defined processes means descending into chaos. What
Ken learned at DuPont was that a process can still be controlled even if
it can’t be defined. What Ken and Mike have written here is a book that
shows you one way of doing that. Practices such as sprints, scrum meetings,
and backlogs are techniques that many people using Scrum have used to
control projects in chaotic circumstances.

In the future, we’ll see more need for Scrum and the future devel-
opments built upon it. Software development has always been difficult to
control. Recent studies indicate that the average project takes twice as long
to do as its initial plans. At the heart of Scrum is the notion that if you
try to control an empirical process with a system designed for defined pro-
cesses, you are doomed to fail. It's becoming increasingly apparent that a
large proportion of software projects are empirical in nature and thus need

il

iv Foreword

a process like Scrum. If you're running a project, or buying software, with
difficult and uncertain requirements in a changing business world, these are
the kinds of techniques you need.

Martin Fowler

Preface

This book was written for several audiences. Our first audience is applic-
ation development managers that need to deliver software to production
in short development cycles while mitigating the inherent risks of software
development. Qur second audience is the software development community
at large. To them, this book sends a profound message: Scrum represents a
new, more accurate way of doing software development that is based on the
assumption that software is a new product every time that it is written or
composed. Once this assumption is understood and accepted, it is easy to
arrive at the conclusion that software requires a great deal of research and
creativity, and that therefore it is better served by a new set of practices
that generate a self-organizing structure while simultaneously reducing risk
and uncertainty.

Finally, we have also written this book for a general audience that
includes everyone involved in a project where there is constant change and
unpredictable events. For this audience Scrum provides a general-purpose
project management system that delivers, while it thrives on change and
adapts to unpredictable events.

Software as “new product” as presented in this book, is radically dif-
ferent from software as “manufactured product”, the standard model made
for software development throughout the last 20 years. Manufacture-like
software methods assume that predictability comes from defined and re-
peatable processes, organizations, and development roles; while Scrum as-
sumes the process, the organization, and the development roles are emer-
gent but statistically predictable, and that they arise from applying simple
practices, patterns, and rules. Scrum is in fact much more predictable
and effective than manufacturing-like processes, because when the Scrum
practices, patterns and rules are applied diligently, the outcome is always:
1) higher productivity, 2) higher adaptability, 3) less risk and uncertainty.
and 4) greater human comfort.

The case studies we provide in this book will show that Scrum doesn'’t
provide marginal productivity gains like process improvements that yield 5-
25% efficiencies. When we say Scrum provides higher productivity, we often
mean several orders of magnitude higher i.e. several 100 percents higher.
When we say higher adaptability we mean coping with radical change.
In some case studies, we present cases where software projects morphed
from simple applications in a single domain to complex applications across
multiple domains: Scrum still managed while providing greater human
comfort to everyone involved. Finally, we show through case studies that
Scrum reduces risk and uncertainty by making everything visible early and
often to all the people involved and by allowing adjustments to be made
as early as possible.

vi Preface

Throughout this book we provide 3 basic things: 1) an understanding
of why this new thinking of software as new product development is nec-
essary, 2) a thorough description of the Scrum practices that match this
new way of thinking with plenty of examples, and 3) a large amount of
end-to-end case studies that show how a wide range of people and projects
have been successful using Scrum for the last 6 years.

This last point is our most compelling argument: The success of
Serum is overwhelming. Scrum has produced by now billions of dollars
in operating software in domains as varied as finance, trading, banking,
telecommunications, benefits management, healthcare, insurance,
e-commerce, manufacturing and even scientific environments.

It is our hope that you, the reader of this book, will also enjoy the
benefits of Scrum, whether as a development staff member wishing to work
in a more predictable, more comforting, and higher producing environment,
or as a manager desiring to finally bring certainty to software development
in your organization.

Thanks to our reviewers: Martin Fowler, Jim Highsmith, Kent Beck,
Grant Heck, Jeff Sutherland, Alan Buffington, Brian Marick, Gary Pollice,
and Tony D’Andrea. Ken would like to thank Chris, Carey, and Valerie.
Mike would like to thank Laura, David, Daniel, and Sara. Together, we
would like to thank our editors at Prentice Hall, Alan Apt and Robert
Martin, as well as Jeff Sutherland for his many contributions to Scrum,
and Kent Beck for demanding that we write this book.

Mike Beedle, Chicago
Ken Schwaber, Boston

Contents

Foreword, Robert C. Martin v
Foreword, Martin Fowler vi
Preface viii
1 Introduction 1
1.1 Serum At Work 2
1.2 Quick Tourof Scrum 7
1.3 Statements About Serum 10
1.3.1 From Jeff Sutherland 10

1.3.2 From Ken Schwaber 17

1.3.3 From MikeBeedle 19

1.4 How the Book Is Organized 21
2 Get Ready For Scrum! 23
2.1 ScrumIsDifferent, 23
22 ANoisy Project. 26
2.3 Cut Through the Noise By Taking Action 27
24 Self-Organization 28
2.5 Respond Empirically, 28
2.6 Daily Visibility Into the Project 29
2.7 Incremental Product Delivery 29
3 Scrum Practices 31
3.1 The Scrum Master 31
3.2 ProductBacklog 32
3.2.1 Product Owner Solely Controls the Product Backlog 34
3.2.2 Estimating Backlog Effort 35

33 Scrum Teams 35
3.3.1 Team Dynamics 36
332 TeamSize 36
3.3.3 Team Composition 37
3.3.4 Team Responsibilities and Authority, 38
3.3.5 Working Environment, 39

3.4 Daily Scrum Meetings 40
3.4.1 Establishing a Meeting Room 41
3.42 Chickensand Pigs 42
3.4.3 Starting the Meeting 42
3.4.4 Format of the Daily Serum 43

vii

viii

Contents

3.4.5 Identifying Impediments 44
3.46 MakingDecisions 45
3.4.7 Establishing Follow-Up Meetings 46
3.5 Sprint Planning Meeting 47
3.5.1 Sprint Planning Meeting Overview 47
3.5.2 Identify Product Backlog and Goal for Next Sprint . 48
3.5.3 Define Sprint Backlog to Meet Sprint Goal 49
36 Sprint 50
3.6.1 Product Increments Are Mined from Chaos 51
3.6.2 No Interference, No Intruders, No Peddlers 51
3.6.3 Sprint Mechanics 52
3.6.4 Abnormal termination of Sprints 53
3.7 SprintReview 54
Applying Scrum 57
4.1 ImplementingSerum 57
4.1.1 Implementing Scrum for New Projects 57
4.1.2 Implementing Scrum for Ongoing Projects 58
4.1.3 Improving Engineering Practices 59
4.2 Business Value through Collaboration 60
4.2.1 Example of Scrum Management 62
4.3 FEmpirical Management 68
4.3.1 Use Frequent, First-Hand Observations 69
4.3.2 Backlog, Assessing Progress and Predicting the Future 70
44 ManagingaSprint 72
4.4.1 SprintSignatures 76
4.5 ManagingaRelease 80
4.5.1 Manage Cost, Date, Quality and Functionality . .. 82
45.2 Basisfor Tradeoffs 83
Why Scrum? 89
51 Noisy Life 89
5.2 Noise in Systems Development Projects 91
5.3 Why Current System Development Methodologies Don’t Work 94
54 Why ScrumWorks 100
55 CaseStudies 103
Why Does Scrum Work? 105
6.1 Understanding Secrum 105
6.2 The New Product Development View of Scrum 106
6.3 The Risk Management and Predictability View of Serum . . 108
6.4 The Kuhnian Viewof Scrum 110
6.5 Knowledge Creation View of Scrum 111
6.6 The Complexity Science View of Scrum 113

Contents ix

6.6.1 Definitions 113
6.62 Features, 115
6.6.3 Scrum Organization, Processes and Roles 117
6.7 Anthropological View of Scrum 118
6.8 The System Dynamics View of Serum 119
6.9 The Psychological View of Scrum 120
6.10 The Football Metaphor 121
Advanced Scrum Applications 123
7.1 Applying Scrum to Multiple Related Projects 123
7.1.1 The First Application 124
7.1.2 Reusability, 124
7.1.3 Initial Setup and the Shared Resources Scrum Team 125
7.1.4 Developing the Second Application 127
7.1.5 Developing More Applications. 128
7.1.6 Review of Specific Techniques 128
7.2 Applying Scrum to Larger Projects 128
7.2.1 The First Executable Prototype and First Branch of
Development 129
7.22 Reusability 130
7.2.3 Initial Setup and the Shared Resources Scrum Team 130
7.2.4 Developing Through a Second Branch 130
7.2.5 Developing Through More Branches 131
7.3 Case Study of Multiple-Related Projects: A Benefits Company 133
7.3.1 The Change in Direction. 134
7.3.2 The Second Application 136
7.3.3 More Applications 136
7.4 Case Study of Large Project: An Outsourcing Company . . 136
Scrum And The Organization 140
8.1 Organizational Impact 140
82 Impediment Example1 141
8.3 The Scrum Master as a Change Agent 142
84 Impediment Example2 143
8.5 Impediment Exampled 143
86 Keep Your EyesOpen 144
8.7 Impediment Exampled4 144
8.8 Impediment Example 5 145
8.9 Organizational Encroachment 145
8.10 Impediment Example 6 146
8.11 Scrum and Mission Statements 146
Scrum Values 147

91 Commitment 148

X

9.2
9.3
9.4
9.5

Contents

Focus

Openness
Respect
Courage

List of Tables

4.1 Sprint signature descriptiono
6.1 Football metaphor

xi

List of Figures

1.1 Scrum SUmMmAary -« e e e e e e e 8
1.2 Inputfornmew Sprint, 9
1.3 Initial Scrum View of a Software System 13
14 FiringaSynchstep 14
31 Inputformew Sprint 47
41 ProjectPlan oo 64
42 Project Plan with first correction 66
4.3 Project Plan with second correction 67
44 Observations 69
4.5 Perfect Backlog Graph 74
4.6 More Likely Backlog Graph 75
4.7 Sprintsignature. 78
4.8 Sprint signature for underestimating 79
4.9 Sprint signature for overestimating 81
4.10 Excellent Release Control 84
4.11 Release with reduced functionality 85
4.12 Release with second team added 87
4.13 Release dateslipped 88
51 ColorTest e 90
5.2 Project complexity 93
53 Pertchart 98
5.4 Empirical Management Model 101
6.1 Knowledge Conversion 112
6.2 Knowledge Spiral 114
7.1 Multiple application environment. 127
7.2 Large application with multiple branches B1, B2, etc. . . . 131
7.3 Large application in a multiple application environment . . 132

xii

CHAPTER 1

Introduction

"In today's fast-paced, fiercely competitive world of commercial
new product development, speed and flexibility are essential. Com-
panies are increasingly realizing that the old, sequential approach
to developing new products simply won't get the job done. In-
stead, companies in Japan and the United States are using a
holistic method; as in rugby, the ball gets passed within the team
as it moves as a unit up the field.” (Reprinted by permission of
Harvard Business Review From: "The New New Product Devel-
opment Game" by Hirotaka Takeuchi and fkujiro Nonaka, January,
1986. Copyright 1986 by the Harvard Business School Publishing
Corporation, all rights reserved.) —

This book presents a radically different approach to managing the
systems development process. Scrum implements an empirical approach
based in process control theory. The empirical approach reintroduces flex-
ibility, adaptability, and productivity into systems development. We say
“reintroduces” because much has been lost over the past twenty years.

This is a practical book that describes the experience we have had
using Scrum to build systems. In this book, we use case studies to give
you a feel for Scrum-based projects and management. We then lay out the
underlying practices for your use in projects.

Chapters 5 and 6 of this book tell why Scrum works. The purpose
of these chapters is to put an end to the ungrounded and contentious dis-
cussion regarding how best to build systems. Industrial process control
theory is a proven body of knowledge that describes why Scrum works and
other approaches are difficult and finally untenable. These chapters de-
scribe what process control theory has to say about systems development,
and how Scrum arose from this discipline and theory. These chapters also
lay out a terminology and framework from which empirical and adaptive
approaches to systems development can ascend and flourish.

Scrum [Takeuchi and Nonaka), is a term that describes a type of prod-
uct development process initially used in Japan. First used to describe
hyper-productive development in 1987 by Ikujiro Nonaka and Hirotaka
Takeuchi, Scrum refers to the strategy used in rugby for getting an out-of-
play ball back into play. The name Scrum stuck because of the similarities
between the game of rugby and the type of product development proscribed
by Scrum. Both are adaptive, quick, self-organizing, and have few rests.

Building systems is hard and getting harder. Many projects are
cancelled and more fail to deliver expected business value. Statistically,

1

2 Chapter 1 Introduction

the information technology industry hasn’t improved much despite efforts
to make it more reliable and predictable. Several studies have found
that about two-thirds of all projects substantially overrun their estimates
[McConnell].

We find the complexity and urgency of requirements coupled with
the rawness and instability of technology to be daunting. Highly motivated
teams of highly skilled developers sometimes succeed, but where do you find
them? If you are looking for a quick, direct way to resuscitate a troubled
project, or if you are looking for a cost-effective way to succeed with new
projects, try Scrum. Scrum can be started on just one project and will
dramatically improve the project’s probability of success.

Scrum is a management and control process that cuts through com-
plexity to focus on building software that meets business needs. Scrum is
superimposed on top of and wraps existing engineering practices, develop-
ment methodologies, or standards. Scrum has been used to wrap Extreme
Programming. Management and teams are able to get their hands around
the requirements and technologies, never let go, and deliver working soft-
ware. Scrum starts producing working functionality within one month.

Scrum deals primarily at the level of the team. It enables people to
work together effectively, and by doing so, it enables them to produce com-
plex, sophisticated products. Scrum is a kind of social engineering aiming
to achieve the fulfillment of all involved by fostering cooperation. Coop-
eration emerges as teams self-organize in incubators nurtured by manage-
ment. Using Scrum, teams develop products incrementally and empirically.
Teams are guided by their knowledge and experience, rather than by for-
mally defined project plans. In almost every instance in which Scrum has
been applied, exponential productivity gains have been realized.

As authors of Scrum, we have evolved and used Scrum as an effec-
tive alternative to traditional methodologies and processes. We've written
this book to help you understand our thinking, share our experiences, and
repeat the success within their own organizations.

In this book, we'll be using the word “I” from now on rather than
“we”, “Mike”, or “Ken”. Unless otherwise identified, “I” will hereafter
refer to Mike Beedle in chapters 6 and 7, and to Ken Schwaber elsewhere.

1.1 Scrum At Work

The best way to begin to understand Scrum is to see it at work. After
using Scrum to build commercial software products, I used Scrum to help
other organizations build systems. The first organization where Scrum was
tested and refined was Individual, Inc. in 1996.

Individual, Inc. was in trouble and its leaders hoped that Scrum
could help them out. Individual, Inc. published an online news service
called NewsPage. NewsPage was initially built using proprietary technol-

Section 1.1 Scrum At Work 3

ogy and was subsequently licensed to companies. With the advent of the
Internet, Individual, Inc. began publishing Personal NewsPage as a website
for individuals.

Eight highly skilled engineers constituted the Personal NewsPage
(PNP) product development team. Though the team was among the best
I've worked with, it suffered from a poor reputation within Individual, Inc.
It was said the PNP team couldn’t produce anything, that it was a “total
disaster.” This belief stemmed from the fact that there hadn’t been a new
PNP release in nearly nine months. This was in 1996, when Internet time
hadn’t yet taken hold of the industry, but nine months was already far too
long. When I discussed this situation with marketing, product manage-
ment, and sales, they said they couldn’t understand the problem. They
would tell the PNP team what they wanted in no uncertain terms, but
the functionality and features they requested never were delivered. When
I discussed the situation with the disgruntled PNP team, it felt that it was
never left alone to develop code. The engineers used the phrase “fire drill.”
The team would think about how to deliver a required piece of functional-
ity, start working on it, and it would suddenly be yanked off onto the next
hot idea. Whenever the PNP team committed to a project, it didn’t have
enough time to focus its attention before product management changed its
mind, marketing told it to do something else, or sales got a great idea that
had to be implemented immediately.

The situation was intolerable. Everyone was frustrated and at odds
with each other. Competition was appearing on the horizon. I asked Rusty,
the head of product management, to come up with a list of everything that
people thought should be in PNP. He already had a list of his own and was
reluctant to go to everyone and ask for his or her input. As he said, “If the
PNP team can’t even build what we’re asking it to do now, why should we
waste the effort to go through list building again?” However, Rusty did as
I asked and compiled a comprehensive list. He also met with the PNP team
to see if it knew of technology changes that needed to be made to implement
the requirements. These were added to the list. He then prioritized the
list. The PNP team gave development time estimates. Rusty sometimes
changed priorities when it became apparent that items with major market
impact didn’t take much effort, or when it became apparent that items
with minor market impact would take much more effort than they were
worth.

I asked Rusty to change the product requirements process. People
currently went straight to the PNP team to ask for new product features
and functionality. I thought it could be more productive if it only had one
source of work and wasn’t interrupted. To implement this, Rusty suggested
that people take their requests only to him. He added their requests to
his list. He then reprioritized the list based on their presentation of the
feature’s importance, his estimate (after talking to someone on the PNP

