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PREFACE

This second volume of our treatise on commutative algebra deals
largely with three basic topics, which go beyond the more or less classical
material of volume I and are on the whole of a more advanced nature
and a more recent vintage. These topics are: (a) valuation theory; (b)
theory of polynomial and power series rings (including generalizations to
graded rings and modules); (c¢) local algebra. Because most of these
topics have either their source or their best motivation in algebraic geom-
etry, the algebro-geometric connections and applications of the purely
algebraic material are constantly stressed and abundantly scattered through-
out the exposition. Thus, this volume can be used in part as an introduc-
tion to some basic concepts and the arithmetic foundations of algebraic
geometry. The reader who is not immediately concerned with geometric
applications may omit the algebro-geometric material in a first reading
(see “Instructions to the reader,” page vii), but it is only fair to say that
many a reader will find it more instructive to find out immediately what
is the geometric motivation behind the purely algebraic material of this
volume.

The first 8 sections of Chapter VI (including § Sbis) deal directly with
properties of places, rather than with those of the valuation associated
with a place. These, therefore, are properties of valuations in which the
value group of the valuation is not involved. The very concept of a valua-
tion is only introduced for the first time in § 8, and, from that point on,
the more -subtle properties of valuations which are related to the value
group come to the fore. These are illustrated by numerous examples, taken
largely from the theory of algebraic function fields (§§ 14, 15). The
last two sections of the chapter contain a general treatment, within the
framework of arbitrary commutative integral domains, of two concepts
which are of considerable importance in algebraic geometry (the Riemann
surface of a field and the notions of normal and derived normal models).

The greater part of Chapter VII is devoted to classical properties of
polynomial and power series rings (e.g., dimension theory) and their
applications to algebraic geometry. This chapter also includes a treatment
of graded rings and modules and such topics as characteristic (Hilbert)
functions and chains of syzygies. In the past, these last two topics repre-
sented some final words of the algebraic theory, to be followed only by
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vi PREFACE

deeper geometric applications. With the modern development of homo-
logical methods in commutative algebra, these topics became starting points
of extensive, purely algebraic theories, having a much wider range of
applications. We could not include, without completely disrupting the
balance of this volume, the results which require the use of truly homological
methods (e.g., torsion and extension functors, complexes, spectral se-
quences). However, we have tried to include the results which may be
proved by methods which, although inspired by homological algebra, are
nevertheless classical in nature. The reader will find these results in
Chapter VII, §§12 and 13, and in Appendices 6 and 7. No previous
knowledge of homological algebra is needed for reading these parts of the
volume. The reader who wants to see how truly homological methods
may be applied to commutative algebra is referred to the original papers
of M. Auslander, D. Buchsbaum, A. Grothendieck, D. Rees, J.-P. Serre,
etc., to a forthcoming book of D. C. Northcott, as well, of course, as to the
basic treatise of Cartan-Eilenberg.

Chapter VIII deals with the theory of local rings. This theory pro-
vides the algebraic basis for the local study of algebraic and analytical
varieties. 'The first six sections are rather elementary and deal with more
general rings than local rings. Deeper results are presented in the rest of
the chapter, but we have not attempted to give an encyclopedic account of
the subject.

While much of the material appears here for the first time in book
form, there is also a good deal of material which is new and represents
current or unpublished research. The appendices treat special topics of
current interest (the first 5 were written by the senior author; the last
two by the junior author), except that Appendix 6 gives a smooth treatment
of two important theorems proved in the text. Appendices 4 and 5 are
of particular interest from an algebro-geometric point of view.

We have not attempted to trace the origin of the various proofs in this
volume. Some of these proofs, especially in the appendices, are new.
Others are transcriptions or arrangements of proofs taken from original
papers,

We wish to acknowledge the assistance which we have received from
M. Hironaka, T. Knapp, S. Shatz, and M. Schlesinger in the work of
checking parts of the manuscript and of reading the galley proofs. Many
improvements have resulted from their assistance.

The work on Appendix 5 was supported by a Research nroject at
Harvard University sponsored by the Air Force Office of Scientific Re-
search.

Cambridge, Massachusetts Oscar ZARISKI
Clermont-Ferrand, France PIERRE SAMUEL



INSTRUCTIONS TO THE READER

As this volume contains a number of topics which either are of some-
what specialized nature (but still belong to pure algebra) or belong to
algebraic geometry, the reader who wishes first to acquaint himself with
the basic algebraic topics before turning his attention to deeper and more
specialized results or to geometric applications, may very well skip some
parts of this volume during a first reading. The material which may thus
be postponed to a second reading is the following:

CuarTer VI
All of § 3, except for the proof of the first two assertions of Theorem
3 and the definition of the rank of a place; § 5: Theorem 10; the lemma and
its corollary; § 5bis (if not immediately interested in geometric applica-
tions); § 11: Lemma 4 and pages 57-67 (beginning with part (b) of
Theorem 19); §12; § 14: The last part of the section, beginning with
Theorem 34’; § 15 (if not interested in examples); §§ 16, 17, and 18.

CuapTer VII
§§ 3, 4, 4bis, 5 and 6 (if not immediately interested in geometric appli-
cations) ; all of § 8, except for the statement of Macaulay’s theorem and
(if it sounds interesting) the proof (another proof, based on local algebra,
may be found in Appendix 6) ; § 9: Theorem 29 and the proof of Theorem
30 (this theorem is contained in Theorem 25); § 11 (the contents of this
section are particularly useful in geometric applications).

Cuarter VIII
All of §5, except for Theorem 13 and its Corollary 2; §10; §11:
Everything concerning multiplicities; all of .§ 12, except for Theorem 27
(second proof recommended) and the statement of the theorem of Cohen-

Macaulay; § 13.

All appendices may be omitted in a first reading.

vii
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VI. VALUATION THEORY

§ 1. Introductory remarks. Homomorphic mappings of rings
into fields are very common in commutative algebra and in its applica-
tions. We may cite the following examples:

EXAMPLE 1. The reduction of integers mod p. More precnsely, let p
be a prime number ; then the canonical mapping of the ring J of integers
onto the residue class ring J/Jp maps J onto a field with p elements.
More generally, we may consider a ring D of algebraic integers (Vol. I,
Ch.V, § 4, p. 265), a prime ideal p in D, and the mapping of D onto D/p.
These examples are of importance in number theory.

EXAMPLE 2. We now give examples pertaining to algebraic geometry.
Let k be a field and K an extension of k. Let (x4, - - -, x,) be a point in
the affine n-space 4,X over K. With every polynomial F(X, - - -, X,)
with coefficients in k we associate its value F(x,, - - -, x,) at the given
point. This defines a homomorphic mapping of the polynomial ring
K[X,,---, X,] into K. Now let us say that a point (x';,---,x')) of
AKX is a specialization of (x,,---,x,) over k if every polynomial
Fek[X,, -, X,] which vanishes at (x,,---,x,) vanishes also at
('3, - -+, x',). Then (by taking differences) two polynomials G, H
with coefficients in & which take the same value at (x,, - - -, x,) take also
the same value at (x'y, - - -, x',). This defines a mapping of k[x,, - - - ,x,]
onto k[x'y, - - -, ' ] (=K), which maps x; on x’; for 1 <i<n. Sucha
mapping, and more generally any homomorphic mapping ¢ of a ring R
into a field, such that ¢(x)# 0 for some x € R, is called a specialization (of
k[xy, -+, x,] into K in our case). Note that this definition implies
that p(1)=1if 1 e R. 1If, as in the above example, the specialization is
the identity on some subfield % of the ring, then we shall say that the
specialization is over k.

EXAMPLE 3. From function theory comes the following example:
with any power series in n variables with complex coefficients we
associate its constant term, i.e., its value at the origin.

Since any integral domain may be imbedded in its quotient field, a
homomorphic mapping of a ring 4 into a field is the same thing as a
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2 VALUATION THEORY Ch. VI

homomorphic mapping of 4 onto an integral domain. Thus, by Vol. I,
Ch. II1, § 8, Theorem 10 a necessary and sufficient condition that a
homomorphism f of a ring A map 4 into a field is that the kernel of f be
a prime ideal.

From now on we suppose that we are dealing with a ring 4 which is
an integral domain. Let K be a field containing 4 (not necessarily its
quotient field), and let f be a specialization of 4. An important problem
is to investigate whether f may be extended to a specialization defined
on as big as possible a subring of K.  An answer to this question will be
given in §4. We may notice already that this problem is not at all
trivial.

EXAMPLE 4. Consider, in fact, a polynomial ring k[X, Y] in two
variables over a field %, and the specialization f of k[X, Y] onto % de-
fined by f(a)=aforain k, f(X)=f(Y)=0 (“the value at the origin”).
The value to be given to the rational function X/Y at the origin is not
determined by f(sinceitappearsas0/0). Wehave k[ X/ Y, V]2 k[X, Y],
and any maximal ideal ¥ in A[X/Y, Y] which contains ¥ contains also
X and thus contracts to the maximal ideal (X, Y) in k[X, Y]. Since
there are infinitely many such maximal ideals ¥ (they are the ideals
generated by A(X/Y) and Y, where A(f) is any irreducible polynomial
in k[£]) it follows that f admits infinitely many extensions to the ring
kX, Y, X|Y).

However, there are elements of K to which the given specialization f
of 4 may be extended without further ado and in a unique fashion.
Consider, in fact, the elements of K which may be writter: in the form
afb with a in A4, b in A4, and f(b)#0. These elements constitute the
quotient ring Ap where p is the kernel of f and is a prime ideal. For
such an element a/b let us write g(a/b)=f(a)/f(b). It is readily verified
that g is actually a mapping: if a/b=a’/b’ with f(b) # 0 and f(4") #0, then
f(a)[f(b)=f(a’)|f(}’) since ab'=ba’ and since f is a homomorphism.
One sees also in a similar way that g is a homomorphism of 4, extending
f(see Vol. I, Ch. IV, §9, Theorem 14). Since g takes values in the
same field as f does, g is a specialization of 4,. The ring A4y is some-
times called the specialization ring of f; it is a local ring if A is noetherian
(Vol. I, Ch. IV, § 11, p. 228).

In Example 1 this local ring is the set of all fractions m/n whose de-
nominator # is not a multiple of p. In Example 2 it is the set of all
rational functions in X),---, X, which are “finite” at the point
(%3 -+, x,) (ie., whose denominator does not vanish at this point).
In Example 3 it is the power series ring itself, as a power series with
non-zero constant term is invertible.
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On the other hand there are (when the specialization f is not an iso-
morphic mapping) elements of K to which f cannot be extended by any
means. These elements are those which can be written under the form
a/b, with a and b in A, with f(a)#0 and f(5) =0, for the value g(a/b) of
a/b in an extension g of f must satisfy the relation g(a/b)-f(b) =f(a) (since
(a/b)-b=a), but this is impossible. The elements a/b of the above
form are the inverses of the non-zero elements in the maximal ideal of
the specialization ring of f. .

We are thus led to studying the extreme case in which all elements of
K which are not in 4 are of this latter type. In this case 4 is identical
with the specialization ring of f, and every element of K which is not in
A must be of the form 1/x, where x is an element of 4 such that f(x)=0.

§ 2. Places

DEFINITION 1. Let K be an arbitrary field. A place of K is a homo-
morphic mapping & of a subring Ko of K into a field 4, such that the follow-
ing conditions are satisfied: N
)] if xe K and x ¢ Ko, then 1/x € Ko and (1/x)?=0;
(2) x? # 0 for some x in K5.

In many applications of ideal theory (and expecially in algebraic geo-
metry) a certain basic field & is given in advance, called the ground field,
and the above arbitrary field K is restricted to be an extension of k:
k< K. Inthat case, one may be particularly interested in places 2 of K
which reduce to the identity on £, i.e., places 2 which satisfy the follow-
ing additional condition:

3) ¢? = cforall ¢ in k (whence % is a subfield of 4).

Any place Z of K which satisfies (3) is said to be a place of K over k&,
or a place of K/k.

LEXAMPLES OF PLACES:

EXAMPLE 1. Let A be a UFD, and a an irreducible element in 4.
The ideal Aa isa prime ideal, whence 4/A4a is an integral domain. De-
note by 4 its quotient field. The canonical homomorphism of 4 onto
A[Aa s a specialization f of 4 into 4. The specialization ring B of f is
the set of all fractions x/y, with x€ 4, y € 4, y ¢ Aa (i.e., y prime to a).
We denote by ¢ the extension of fto B. The homomorphic mapping
& 1s a place: in fact, by the unique factorization, any element z of the
quotient field K.of 4 which does not belong to B can be written in the
form y/x, with y € 4, x€ 4, y ¢ Aa, x € Aa; then its inverse 1/z=x/y
belongs to B and satisfies the relation g(1/2z)=0.
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We call the place g which is thus determined by an irreducible ele-
ment a of A an a-adic place (of the quotient field of A4).

EXAMPLE 2. A similar example may be given if one takes for 4 a
Dedekind domain and if one considers the homomorphic mapping f of
A into the quotient field of A/p (v denoting a prime ideal of 4). The
extension g of f to the local ring A4, of f is again a place [notice that 4,
isa PID (Vol. I, Ch. V, § 7, Theorem 16), to which the preceding ex-
ample may be applied]. This place is called the p-adic place of A.

We shall show at once the following property of places: if 2 is a place
of K, then & has no proper extensionsin K. Or more precisely: if ¢ is
a homomorphic mapping of a subring L of K (into some field), such that
L>Kg and p=2on Kp, then L=K». We note first that, by condition
(1), the element 1 of K belongs to K». It follows then from condition
(2) that 12 must be the element 1 of 4.  Now, let x be any element of L.
We cannot have simultaneously 1/x € K» and (1/x)2 =0, for then we
would have 1=1p=(x-1/x)p=x¢ (1/x)p=x¢-0=0, a contradiction.
It follows therefore, by condition (1), that x€ K. Hence L=Ka,
as asserted.

It will be proved later (§ 4, Theorem 5’, Corollary 4) that the above
is a characteristic property of places.

We introduce the symbol oo and we agree to write xZ = w if x ¢ K3.
The following assertions are immediate consequences of conditions (1)
and (2) above:

(a) if ¥ = co and 32 # o, then (x+3)? = ©;
(b) if x2 = oo and & + 0, then (»3)? = o0;
(c) if x # 0, then x2 = 0 if and only if (1/x)? = co.

If x € Kg we shall call x2 the P-value of x, or the value of x at the place
2, and we shall say that x is finite at 2 or has finite P-value if x2 # 0,
ie, if xe Kg. The ring Ko shall be referred to as the valuation ring of
the place 2,

It is clear that the elements x2?, x € K, form a subringof 4. It is
easily seen that this subring is actually a field, for if «=x2# 0, then, by
condition (1), also 1/x € K, and hence 1/a=(1/x)?. We call this field
the residue field of . The elements of 4 which are not P-values of
elements of K do not interest us. Hence we shall assume that the
residue field of & is the field 4 itself.

If K is an extension of a ground field &, if 2 is a place of K/k and if s
is the transcendence degree of 4 over k (s may be an infinite cardinal), we
call s the dimension of the place P, over k, or in symbols: s=dim Pjk. If
K has transcendence degree » over k, then 0 <s<7. The place # of
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K|k is algebraic (over k) if s=0; rational if A=k. On the other extreme
we have the case s=7. In this case and under the additional assump-
tion that r is finite, & is an isomorphism (Vol. I, Ch. 11, § 12, Theorem
29), and furthermore it follows at once from condition (1) that Ky =K,
whence & is merely a k-isomorphism of K. Places which are iso-
morphisms of K will be called trivial places of K (or trivial places of
K|k, if they are k-isomorphisms of K).

It is obvious that the trivial places 2 of K are characterized by the
condition Kz=K. On the other hand, if 2 is a place of K and K, is a
subfield of K, then the restriction &, of 2 to K, is obviously a place of
K. Therefore, if K;< K5 then 2, is atrivial place of K,. In parti-
cular, if K has characteristic p # 0, then any place 2 of K is trivial on the
prime subfield of K (for 1 € K5).

From condition (1) of Definition 1 it follows that if an element x of Kz
is such that x## 0, then 1/x belongs to Kz and hence x is a unit in Kg.
Hence the kernel of & consists of all non-units of the ring Kg. The
kernel of & is therefore a maximal ideal in Kz; in fact it is the only
maximal ideal in K». (However, the valuation ring K of a place 2 is
not necessarily a local ring, since according to our definition, a local ring
is noetherian (Vol. I, Ch. IV, § 11, p. 228), while, as we shall see later
(§ 10, Theorem 16), a valuation ring need not be noetherian.) The
maximal ideal in K» will be denoted by M and will be referred to as the
prime ideal of the place . The field K»/M4 and the residue field 4 of
2 are isomorphic.

Let L be a subring of K. Our definition of places of K implies that
if L is the valuation ring of a place 2 of K, then L contains the reciprocal
of any element of K which does not belong to L; and, furthermore, L
must contain & if L is the valuation ring of a place of K/k. We now
prove that also the converse is true:

THEOREM 1. Let L be a subring of K. If L contains the reciprocal
of any element of K which does not belong to L, then there exists a place P of
K such that L is the valuation ring of P. If, furthermore, K contains a
ground field k and L contains k, then there also exists a place P of K[k
such that L is the valuation ring of P.

PROOF. Assume that L contains the reciprocal of any element of K
which does not belong to L. Then it follows in the first place that
1eL. We next show that the non-units of L form an ideal. For this
it is only necessary to show that if x and y are non-units of L, then also
x+y is a non-unit, and in the proof we may assume that both x and y are
different from zero. By assumption, either y/x or x/y belongs to L.
Let, say, y/xe L. Then x+y=x(1+y/x), and since 1 +y/xe L and x
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is a non-unit in L, we conclude that x+y is a non-unit in L, as asserted.
Let, then, M be the ideal of non-units of L, and let £ be the canonical
homomorphism of L onto the field L/M. Then condition (1) of
Definition 1 is satisfied, with K= L (while 4 is now the field L/9), for
if xe Kand x ¢ L, then 1/xe L, whence 1/x € M and therefore (1/x)2=0.
It is obvious that also condition (2) is satisfied, since L/®t is a field and
since & maps L onto L/M.

Assume now that the additional condition k< L is also satisfied. Then
the field L/M contains the isomorphic image k2 of k. We may therefore
identify each element ¢ of & with its image ¢2; and then also condition
(3) is satisfied. Q.E.D.

An important property of the valuation ring K of a place 2 is that it
is integrally closed in K. For let x be any element of K which is in-
tegrally dependent on Kg: x"+a,x""'+ - - +a,=0, a; € K5. Divid-
ing by x" we find 1= —a,(1/x)—ay(1/x)?~ - - - —a,(1/x)". If x¢ K,
then 1/x € Ky, (1/x)2 =0, and hence equating the Z-values of both sides
of the above relation we get 1=0, a contradiction. Hence x € K&, and
K is integrally closed in K, as asserted.

DeriNiTION 2. If 2 and &' are places of K (or of K|k), with residue
fields 4 and 4" respectively, then P and P’ are said to be isomorphic
places (or k-isomorphic places) if there exists an isomorphism ¢ (or a k-
tsomorphism ) of 4 onto A’ such that &' =Py.

A necessary and sufficient condition that two places 2 and 2’ of K (or
of K/k) be isomorphic (or k-isomorphic) is that their valuation rings K
and Ko coincide. It is obvious that the condition is necessary.
Assume now that the condition is satisfied, and let ¢ be the canonical
homomorphism of K onto K#/Ms. Then 2-!¢ is an isomorphism of
4 onto KMo, and similarly 2"~ 'g isan isomorphism of 4’ onto K/ ».
Hence Z-1%'(= 2~ ¢~'2’) is an isomorphism y of 4 onto 4’, showing
that 2 and &’ are isomorphic places. If, moreover, # and ¢’ are places
of K/k, then ¢ is a k-isomorphism of 4 onto 4°, whence 2 and &’ are k-
isomorphic places.

It is clear that k-isomorphic places of K/k have the same dimension
over k.

Isomorphic algebraic places of K[k will be referred to as conjugate
Places (over k) if their residue fields are subfields of one and the same
algebraic closure k of k. In that case, these residue fields are con-
jugate subfields of %/k.

If 2 is a place of K/k, where k is a ground field, then K and the
residue field 4 of & have the same characteristic (since k=4). Con-
versely, assume that & is a place of K such that K and 4 have the same
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characteristic p. (Note that this assumption is satisfied for any place 2
of K if K has characteristic 0, for in that case the restriction of 2 to the
prime subfield of K is an isomorphism.) Let I" denote the prime subfield
of K. We know that if p 0 then the restriction of £ to I is an isomor-
phism. If p=0and if / denotes the ring of integers in I', then J< K,
(since 1 € K2) and the restriction of # to J must be an isomorphism (for
otherwise 4 would be of characteristic #0). Hence again the restriction
of Zto I'is an isomorphism (and we have I'c K3). It follows at once (as
in the proof of the last part of Theorem 1) that 2 is isomorphic to a place
of K/I'. We thus see that the theory of places over ground fields is
essentially as general as the theory of arbitrary places 2 in the equal
characteristic case (i.e., in the case in which K and 4 have the same
characteristic).

§ 3. Specialization of places. Let 2 and 2’ be places of K. We
say that ' is a specialization of 7 and we write 2 — &', if the valuation
ring K of 2’ is contained in the valuation ring K» of 2, and we say
that &' is a proper specialization of 2 if K»- is a proper subring of Ka.
If both & and 2’ are places of K/k and &' is a specialization of 2, then
we shall write 2 5 2",

It is clear that  — 2" if and only if either one of the following condi-
tions is satisfied: (a) x#’'#co implies x2# 0; (b) x#=0 implies
xP' =0 (for, x#=0 implies (1/x)? =00, whence (1/x)?'=c0, or
x?'=0). Hence we have, in view of (b):

(1) PP =>Kp>Kp and s c Mp-.
In particular, if both 2 and &’ are places of K/k and 2 A Z’, then we
conclude at once with the following result: If x}, x,, - - -, x, are any

elements of K which are finite at &' (and therefore also at P), then any
algebraic relation, over k, between the P-values of the x, is also satisfied by
the P'-values of the x;. 'Thus, our definition of specialization of places is
a natural extension of the notion of specialization used in algebraic
geometry.

Every place of K is a specialization of any trivial place of K. Further-
more, isomorphic places are specializations of each other. Conversely,
if two places 2 and 2’ are such that each is a specialization of the other,
then they are isomorphic places. As a generalization of the last state-
ment, we have the following theorem:

THEOREM 2. Let P and &' be places of K, with residue fields 4 and
4’ respectively.  Then P — P’ if and only if there exists a place 2 of 4
such that ' =P3 on Ky-.
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Proor. Assume that Z — #'. We set 4,=K 3% and we observe
that since Ky < K, 4 is asubring of 4.  On the other hand, we have,
by (1), that My is a prime ideal in K. Let now ¢ and ¢’ denote the
canonical homomorphisms of Kz onto K /M» and Kz /Ms respec-
tively, and let 2, be the restriction of  to K». Since M » is the kernel
of &, the product #,~1p is an isomorphism of 4, onto K, /M.
Similarly ¢'-2’ is an isomorphism of K /M onto 4'. Since
Mo <My, p~l¢" is a homomorphism of K, /M» onto Kp'/Ms. We
set 2=2,"p-9p7l¢ -9 1P =P ,~12". Then £ is a homomorphism of
4z onto 4°. If £ is an element of 4 which is not in 4, and x is some
fixed element of K» such that x#=¢, then x ¢ Ky, (1/x)2' =0, and
hence (1/£)2=0. We have thus proved that 2 is a place of 4, with
residue field 4', and that #,2=2". Hence %' and 22 coincide on
Ko

Conversely, if we have 2’ =22 on K», where 2 is a place of 4, then
it is clear that 2’ # co implies x2 # oo, whence Ks <Ky, and 2 is a
specialization of . This completes the proof. .

We note that 2’ and 22 coincide not only on Ky but also on K3, in
the following sense: if x € K» and x ¢ K5 (whence xP € 4 and xP' = ),
then (x#)2=c0. For, if x¢ Kg:, then (1/x)? =0, and hence
(1/x)#2=0 (since ' =22 on Ky'), i.e., (1/xP)2=0 and (x2)2 = 0,
as asserted.

We note also that in the special case of isomorphic places Z, #', 9 is
an isomorphism of 4, i.e., 2 is a trivial place of 4.

It is clear that the place 2 whose existence is asserted in Theorem 2
is uniquely determined by 2 and £’ and that if both 2 and &' are
places over k, then also 2 is a place over £ (i.e., a place of 4/k).

CoroLLARY. If P and P’ are places of Kk and P % P, then
dim Z’[k<dim Pk. Furthermore, if the residue field 4 of P has finite
transcendence degree over k and P’ is a specialization of P over k, then
dim &' [k=dim P|k if and only if P and P’ are k-isomorphic places.

We shall now investigate the following question: given a place Z of
K, find all the places of K of which £ is a specialization. From
Theorem 1 (§ 2) it follows at once that any ring (in K) which contains
the valuation ring of a place of K is itself a valuation ring of a place of K.
Hence our question is equivalent to the following: find all the subrings
of K which contain Kg. The answer to this equation is given by the
following theorem:

THEOREM 3. Any subring of K which contains K is necessarily the
quotient ring of K with respect to some prime ideal of Ke. If M, and M,
are ideals in Kz, then either M, contains M, or M, contains M 1 (and hence



§3 SPECIALIZATION OF PLACES 9

the set of rings between K and K is totally ordered by set-theoretic inclu-
sion <), If P is a place of K|k and if tr.d. K|k=r# o, then K» has
only a finite number of prime ideals, and the number of prime ideals of Ko
(other than K » itself) is at most equal to r—s, where s=dim P/k.
Proor. Let L bearingbetween Kpand K: K<L <K. ThenLis
the valuation ring K. of a place 2 of which £ is a specialization and
hence the prime ideal M ; of 2 is also a prime ideal in K». Any element
of K which is not in %z is a unit in K3 (since M is the ideal of non-
units of K3 and since K»< K). Hence the quotient ring of K» with
respect to the prime ideal M5 (i.e., the set of all quotients a/b, where
a, be K»and b ¢ M3) is contained in K3.  On the other hand, we now
show that any element x of K. belongs to the above quotient ring.
This is obvious if x € K». Assume that x ¢ K. If we set y=1/x,
then y € K7 (since K is a valuation ring). Furthermore, x ¢ 2 (since
M2< K»), and hence x is a unit in Ka. Therefore also y is a unit in
- Ka, and so y ¢ Ms. It follows that x(=1/y) belongs to the quotient
ring of K» with respect to M. This proves the first part of the theorem.
Let 9, and M, be any two proper ideals in K (not necessarily prime
ideals) and assume that M, ¢ M,. Let x be an element of M,, not in
9R,, and let y be any element of M,, y#0. Then x/y ¢ K», and hence
y/x€ Ko, y € M, (since M, is an ideal and x € M;). Hence M,<M,.
Assume now that 2 is a place of K/k and that tr.d. K/k=r# c0. Let
M, and M, be two prime ideals in K» and let us assume that, say,
My > M, Let L, i=1, 2, be the quotient ring of K» with respect to
M;, and let P; be a place of K whose valuation ring is L;. We have
L,>L,, and hence &, is a proper specialization of 2,. On the other
hand, & is a specialization of #,. It follows by Theorem 2, Corol-
lary, that dim Z/k<dim 2,/k<dim P,/k<r. This shows that the
number of prime ideals of K is finite and that the number of prime
ideals in K, other than K itself, is at most 7 —s. This completes the
proof of the theorem.
DerINITION 1. The ordinal typet of the totally ordered set of proper
prime ideals q of Ko (0#(0), a# Ko; a, precedes a, if q,> q,) is called
the rank of the place 2.

1 In most axiomatic systems of set theory it is possible to attach to every
totally ordered set £ a well-defined object o(E) in such a way that we have
o(E)=0o(F) if and only if E and F are isomorphic ordered sets (i.e., if there exists
a one-to-one mapping f of E onto F such that the relations x <y and f(x) < f(y)
are equivalent). The object o(E) is called the ordinal type of E. Further-
more, if E is isomorphic to the set {1,2,--- 7} (ie., if £ is a finite, totally
ordered set with n elements), we shall identify its ordinal type with its cardinal
number 2.



