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Complete resequencing of 40 genomes
reveals domestication events and genes
in silkworm (Bombyx)
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Abstract: A single-base-pair resolution silkworm genetic variation map was con-
structed from 40 domesticated and wild silkworms, each sequenced to approxi-
mately threefold coverage, representing 99.88% of the genome. We identified ~16
million single-nucleotide polymorphisms, many indels, and structural variations. We find
that the domesticated silkworms are clearly genetically differentiated from the wild ones,
but have maintained large levels of genetic variability, suggesting a short domestication
event involving a large number of individuals. We also identified signals of selection at 354

candidate genes that may have been important during domestication, some of which have
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enriched expression in the silk gland, midgut,and testis. These data add to our under-
standing of the domestication processes, and may have applications in devising pest con-
trol strategies and advancing the use of silkworm as efficient bioreactors.
Keywords : Silkworm; SNP; GROSS; Domestication

The domesticated silkworm, Bombyx mori, has a mid-range genome size of ~432 Mb"",
is the model insect for the order Lepidoptera, has economically important values (e. g. , silk
and bioreactors production) , and has been domesticated for more than 5,000 years*' . Because
of human selection, silkworms have evolved complete dependence on humans for survival®
and more than 1,000 inbred domesticated strains are kept worldwide™ . Archaeological and
genetic evidences indicate that the domesticated silkworm originated from the Chinese wild
silkworm, Bombyx mandarina , that is found throughout Asia, where modern sericulture and
silkworm domestication were initiated.

The origin of the domesticated silkworm is a long-standing question that has not been set-
tled by previous limited biochemical and molecular analyses. Two hypotheses suggested a u-
nique domestication but disagreed on the ancestral variety. One hypothesis, based on
isoenzyme polymorphism, proposed mono-voltinism as ancestral variety (voltinism represents
number of generations per annum), from which bi- and multi-voltine were derived by artifi-
cial selection'" ; the other proposed the reverse path considering evidence from archaeology,
history, and genetics® . An alternative hypothesis based on random amplification of poly-
morphic DNA indicatede that the ancestral domestic silkworm strains were issued. not from a
unique variety, but from mixed geographic locations and ecological types®'. These theories
are conflicting, probably because they were derived from incomplete genetic information.
Consequently, we present here a genome-wide detailed genetic variation map in hopes to help
reconstruct the silkworm domestication history.

The data consisted of 40 samples from 29 phenotypically and geographically diverse do-
mesticated silkworm lines [categorized by geographical regions™ . Chinese, Japanese, Tropi-
cal, European lineages, and the mutant system], as well as 11 wild silkworms from various
mulberry fields in China (Table S1). We sequenced each genome at approximately threefold
coverage, after creating single- and paired-end (PE) libraries with inserts of PEs ranging
from base pairs 137 to 307 bp'™.

Raw short reads were mapped against the refined 432-Mb reference genome from Dazao' with
the program SOAP*'. We pooled all reads from the 40 complete genomes and identified 15,986,559
ingle-nucleotide polymorphisms (SNPs) using SoapSNP7**) (Table S3A). The accuracy of the SNP
calling was evaluated with Sequenom (San Diego.California) genotyping of a representative subset of
variants in all 40 varieties, resulting in a 96.7% validation rate'” .

We then pooled separately all 29 domesticated strains and all 11 wild varieties and ob-
tained SNP sets for each”™ . The number of SNPs in the domestic versus wild varieties was
14,023,573 and 13,237,865, respectively(Table S3A) . To account for the different number of
domestic and wild strains,we used the population-size scaled mutation rate s to measure ge-
netic variation"" (Table S3B). We found that fs.somesicaica (0. 0108) was significantly smaller than
Os.wia (0.0130)[Mann-Whitney U (MWU), P =1.10X 10 "], which may reflect differences in

effective population size and demographic history (including domestication and artificial se-



lection) . The rate of heterozygosity in domesticated strains was more than twofold lower than
that of wild varieties(0. 0032 versus 0. 0080, respectively) (MWU, P =3.33 X 10 °). This re-
duction in heterozygosity is most likely due to inbreeding or the bottleneck experienced by do-
mesticated lines.

In addition to SNPs, we also identified 311,608 small insertion-deletions (indels) (Table
S4A), a subset of which were validated with polymerase chain reaction™. The 65 values for
the indels (Table S4B) were in agreement with a lower effective population size in domestica-
ted versus wild varieties. A mate-pair relationship method”""’ identified 35,093 structural va-
riants (SVs) among the 40 varieties (Table S5). Over three-fourths of the SVs overlapped
with transposable elements (TEs) , suggesting that SV events in silkworm are likely due to TE
content''?) and mobility''"'. The SNPs, indels, and SVs all contributed to a comprehensive ge-

netic variation map for the silkworm.

[6.13.14]

To elucidate the phylogeny of silkworms beyond previous studies ,» we used our i-

dentified SNPs to estimate a neighbor-joining tree'” on the basis of a dissimilarity measure of
genetic distance (Figure 1A). This tree represents an average of distances among strains, so
lineages cannot be directly interpreted as representing phylogenetic relationships. Instead,
the distances may reflect gene flow and other population level processes related to human ac-
tivities such as ancient commercial trade. the unrooted radial relationship reveals a clear split
between the domesticated and wild varieties, and the domestic strains cluster into several sub-
groups (Figure 1A).

A principle component analysis (PCA)'" classified the first four eigenvectors as signifi-
cant (Table S6; Tracy-Widom, P<C0.05). The first eigenvector clearly separates the domes-
ticated and wild varieties, whereas the second eigenvector divides the domesticated strains in-
to subgroups correlated with voltinism (Figure 1B, top). The third principle component sepa-
rates D01 and D03, (which are high-silk producing Japanese domesticated strains) from the
other domesticated strains, whereas the fourth separates W01 and W04 from the other wild
varieties (Figure 1B, bottom). Results of population structure analysis'”' (Figure S3) con-
firmed the results of the PCA, as well as the neighbor joining analysis. The clear genetic sep-
aration between domesticated and wild varieties suggests a unique domestication event and
relatively little subsequent gene flow between the two groups.

One puzzling observation is that, although domesticated strains are clearly genetically
differentiated from the wild ones, they still harbor ~83% of the variation observed in the
wild varieties. This suggests that the population-size bottleneck at domestication only reduced
genetic variability mildly"™ ; that is, a large number of individuals must have been selected for
initial domestication or else domestication occurred simultaneously in many places. To quanti-
fy this observation, we fit a simple coalescence-based genetic bottleneck model to the SNP
frequency spectrum'™ . The estimated model suggests that the domestication event lead to a
90% reduction in effective population size during the initial bottleneck (Figure S2). Addition-
ally, we observed no excess of low-frequency variants in the domesticated varieties compared
with the wild varieties, suggesting that there has not been obvious population growth since
the domestication event and that the domestic lines probably have had a generally stable ef-
fective population size.

Our measure of pairwise linkage disequilibrium (LD)"™ showed that LD decays rapidly in
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Figure 1. Silkworm phylogeny and population structure from PCA. (A) A Neighbor-Joining tree from genomic
SNPs, bootstrapped with 1,000 replicates ( bootstrap values less than 100 are shown on arcs; those equal to 100
are not shown) : green for all wild varieties; others are domesticated strains separated into three groups (purple,
red, and yellow). Domesticated strains are denoted by a combination of symbols representing silkworm systems
(hollow circles, Chinese; stars, Japanese; triangles, tropical; squares, European; filled circles, mutant system)
and sample IDs (D01 to D29 and P50-ref for the reference genome of Dazao). Wild varieties are indicated by their
IDs (W01 to W11). Scale bar, frequencies of base-pair differences. (B) PCA results of the first four statistically
significant components (Tracy-Wisdom, P<Z0.05). (Top) the first eigenvector separates domesticated and wild
varieties, and the second divides the domesticated strains into subgroups. (Bottom) the third eigenvector separa-
ting the high-silk production Japanese domesticated strains D01 and D03 from the other domesticated strains, and

the fourth separates the wild varieties W01 and W04 from the other wild varieties

silkworms, with correlation coefficient r* decreasing to half of its maximum value at dis-
tances of ~46 and 7 base pairs for the domesticated and wild varieties, respectively (Figure
S1). The fast decay of LD implies that regions affected by selective sweeps are probably rela-
tively small. To detect regions with significant (Z test, P<C0.005) signatures of selective
sweep, we measured SNP variability and frequency spectrum following a genome-wide sliding
window strategy'’ (Figure 2A). Though the significance of our Z-tests"”’ cannot be interpreted lit-
erally due to correlations in LD and shared ancestral history between the two populations, they Z
test suggest differences in frequency spectra and amounts of variability between the two groups. We
termed the candidate regions genomic regions of selective signals (GROSS) .

We identified a total of 1,041 GROSS"', covering 12.5 Mb (2.9%) of the genome,

which may reflect genomic footprints left by artificial selection during domestication. A re-



gion affected by selective sweep typically has an elevated level of LD"*'*', and in our
GROSS, the level of LD among SNP pairs less than 20-kb apart was 2.3 times higher than ge-
nome average (Figure 2B), consistent with the hypothesis that selection is affecting these re-
gions. In all these regions, divergence levels” between the domesticated and wild groups

were also elevated (Figure 2C), confirming the differentiation of the two subpopulations.
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Figure 2 Genomic regions of selective signals (GROSS). (A) Two-dimensional distribution for 0. domesticatea / 0z, wia and Taji-
ma’s D for domesticated silkworms, 5-kb windows, data points of which locate to the left of the vertical red line (corre-
sponding to Z test P<<(0.005) and below the horizontal red line (also Z test P<0. 005) were picked out as building blocks
of GROSS. (B) Linkage disequilibrium (LD) in GROSS. For domesticated silkworms, LD decays much more slower in
GROSS than in the whole genome, whereas for wild varieties, no obvious change in the pattern was observed. (C) Distribu-

tion of divergence between domesticated and wild groups in GROSS versus whole genome (F, )"

B. mori has experienced intense artificial selection, represents a completely domestica-
ted insect” , and has become totally dependent on humans for survival. Artificial selection
has also enhanced important economic traits such as cocoon size, growth rate, and digestion

efficiency”’ . Moreover, compared to its wild ancestor B. mandarina, B. mori has gained
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some representative behavioral characteristics (such as tolerance to human proximity and
handling, as well as extensive crowding) and lost other traits (such as flight, predators, and
diseases avoidance). However, to date no genes have been identified as domestication genes
under artificial selection. Within GROSS, we identified 354 protein-coding genes that repre-
sent good candidates for domestication genes (Table S9). Their Gene Ontology annotation"'”’
showed the most representation in the category of “binding” and “catalytic” in molecular
function. as well as “metabolic” and “cellular” in biological process (Figure S4).

Considering published expression profiles performed on different tissues in fifth-instar
day 3 of Dazao with genome-wide microarray '® , we found that 159 of our GROSS genes ex-
hibit differential expression. Of these, 4, 32, and 54 genes are enriched in tissues of silk
gland, midgut, and testis, respectively (Figure S5). Among the genes enriched in the silk
gland is silk gland factor-1 (Sgf-1). a homolog of a Drosophila melanogaster Fkh gene. Sgf-1
regulates the transcription of the B. mori glue protein-encoding sericin-1 gene and of three
fibroin genes encoding fibroin light chain, fibroin heavy chain and fhx/P25"**'. Another
silk gland enriched gene, BGIBMGA005127 , homologous to the Drosophila sage gene, was
overexpressed fourfold in a high-silk strain compared with Dazao (Figure S6). In Drosophi-
la, the products of Fkh and sage genes cooperate to regulate the transcription of the glue
genes SG1 and SG2, which are crucial for the synthesis and secretion of glue proteins* /.
Additionally, midgut- and testis- enriched genes suggest that genes involved in energy metab-
olism and reproduction have also been under artificial selection during domestication'”. Spe-
cifically, we identified three likely candidate for artificial selection: (i) NM 001130902 is ho-
mologous to paramyosin protein in Drosophila and may be related to flight®'; (ii) NM
001043506 is homologous to fattyacyl desaturase (desatl) in Drosophila , which is related to
courtship behaviors, because mutations in desatl can change the pattern of sex pheromones
production and discrimination'*’; finally, (iii) BGIBMGA000972 is homologous to tyrosine-
protein kinase Btk29A in Drosophila , which is involved in male genitalia development™ .

In sericulture, silkworms are typically categorized by their geographic origins™ . Voltin-
ism, which results from adaption to ecological conditions, and geographic systems have been
central to previous studies of silkworm origin and domestication* . Our findings indicate
that a unique domestication event occurred and, although voltinism correlates with genetic
distances, major genetically cohesive strains cannot be identified on the basis of voltinism.
We observed no correlation between longitudes of the sample origins and any of the principle
components, but we did find a significant correlation between the latitudes and eigenvectors 2
and 4 in the PCA (Table S7). Although this correlation might be due to isolation by distance, this
result also agrees with previous studies suggesting that climate affects silkworm biology*' .

The silkworm data reported here represents the largest body of genome sequences for a
lepidopteran species and offers a source of near-relatives in this clade for comparative genom-
ic analysis. We further proposed a set of candidate domestication genes that, in addition to
being putatively under artificial selection, also show higher expression levels in tissues impor-
tant for silkworm economic traits. Because a proportion of the GROSS genes were probably
important in domestication, functional verification of these candidate genes may enable a

comprehensive understanding of the differences of biological characteristics between B. mori

and B. mandarina. Moreover, domesticated silkworms have been used as bioreactors'?27!,



and such an effort may provide useful clues to help improve the capacity and capability of
silkworm to produce foreign proteins'™’. These findings may also aid in the understanding of
how to enhance traits of interest in other organisms in an environmentally safe manner and,

because the wild silkworm is a destructive pest, allow new approaches for pest control.
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1 Materials and methods

1.1 Sample collection

In order to include major silkworm systems kept in the laboratories worldwide, we col-
lected strains from diverse geographic regions, such as China, Japan, Europe and tropical ar-
eas (mostly southeast Asian: India, Cambodia and Laos), as well as silkworms from the mu-
tant system. All 29 domesticated samples listed in Table S1 are from the Institute of Sericul-
ture and Systems Biology in Southwest University of China. Two important developmental
characteristics, voltinism (number of generations per year) and moltinism (number of larval
molts per generation), and sex were recorded for each of those 29 domesticated silkworms.
Of these, 18 are monovoltine, 8 are bivoltine and others are polyvoltine. We also captured 11
wild silkworms from mulberry fields in China, facilitating the comparative analysis between

domesticated and wild groups.
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