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PREFACE

According to the current view, the basic building blocks of matter are quarks and
leptons, which interact with one another through the intermediaries of Yang-
Mills gauge fields (gravity being ignored in this context). This means that the
forms of the interactions are completely determined by the algebraic structure of
certain internal symmetry groups. Thus, the strong interactions are associated
with the group SU(3), and is described by a gauge theory called quantum
chromodynamics. The electro-weak interactions, as described by the now stan-
dard Weinberg-Salam model, is associated with the group SU(2) X U(l).

This book is a concise introduction to the physical motivation behind these
ideas, and precise mathematical formulation thereof. The goal of the book is to
explain why and how the mathematical formalism helps us to understand the
relevant observed phenomena. The audience for which this book is written are
graduate students in physics who have some knowledge of the experimental parts
of particle physics, and an acquaintance with quantum field theory, including
Feynman graphs and the notion of renormalization. This book might serve as a
text for a one-semester course beyond quantum field theory. The first edition of
this book, which came out in 1982, was based on a course I gave at M.1.T., and
on lectures I gave in Santiago, Chile, in 1977, and in Beijing, China, in 1979. [
am indebted to 1. Saavedra for the opportunity to lecture in Chile, to Chang
Wen-yu and S.C.C. Ting for the inducement to give the Beijing lecture, and to
M. Jacob and K. K. Phua for the encouragement to bring out the first edition.

The main addition to the second edition are Wilson’s approach to renormaliza-
tion, lattice gauge theory, and quark confinement. I am grateful to the many
readers who have pointed out errors in the first edition, which I hope have been
corrected in this edition.

I owe special thanks to my colleagues at M.I.T., especially A. Guth, R.
Jackiw, K. Johnson, and J. Polonyi, from whom 1 have learned much that is
being passed along in this book.

Kerson Huang

Marblehead, Mass.
February 1991
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CHAPTER 1

INTRODUCTION

1.1 Particles and Interactions

—Rz#E BRI¥E HiHAg

Take half from a foot-long stick each day;
you will not exhaust it in a million years.

The thought experiment contemplated in this proposition by an ancient Chinese
sophist! is an apt allegory for what physicists actually do in the laboratory, in
their search for the ultimate constituents of matter.

During the three centuries since the birth of physics in the modern sense, we
have done about 60 days’ worth of “halving” (down to 107’6 cm). At around
day 30 (at 1078 cm), we encountered the first granular structure of matter—
atoms, which appeared at first to be indivisible. As we know, they turned out to
be divisible further into electrons and nuclei; and nuclei could in turn be split
into nucleons. Now we are at the stage when constituents of the nucleon—
quarks—can be confidently identified. Indications are that the subdividing
process will continue. The ancient sophist seems to be right so far.

From an experimental point of view, particles are detectable packets of energy
and momentum, be they billiard balls, photons, or lambda hyperons. At each
stage of our understanding, we designate certain particles as ‘‘fundamental”, in
the sense that they are the most elementary interacting units in our theories. As
our experimental knowledge expands, we have often been forced to revise our
views. The necessity for such revisions rests with the stringent requirement we
place upon our theories: they must, in principle, be able to predict the
quantitative results of all possible experiments.

It is fortunate that, at any given stage, we were able to regard certain particles
as provisionally fundamental, without jeopardizing the right to change our mind.
The reason is that, according to quantum mechanics, it is a good approximation
to ignore those quantum states of a system whose excitation energies lie far
above the energy range being studied. For example, a nucleus could be treated
phenomenologically as a point mass at energies far below 1 MeV. We have
discovered many layers of substructure since the era of atomic physics; but it is a
remarkable fact that the dynamical principles learned from that era, as synthe-
sized by relativistic local quantum field theory?, continues to work up to the
present stage.

! Kungsun Lung (£47h%), quoted in Chuang Chou, Chuangtse (ca. 300 B.C.), chapter 33.
(HEFXTRE=+). ’

2 ). D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964);
Relativistic Quantum Fields (McGraw-Hill, New York, 1965); C. Itzykson and J.-B. Zuber.
Quantum Field Theory (McGraw-Hill, New York, 1980).



2 Quarks, Leptons and Gauge Fields

Interactions among experimentally observed particles fall into four types of
markedly different strengths: gravitational, weak, electromagnetic, and strong
interactions. These are briefly reviewed in Table 1.1.

In the current theoretical view, which has come to be known as the ‘‘standard
model,”’ the weak and electromagnetic interactions are low-energy manifesta-
tions of a single unified interaction, and the strong interactions originate in a
hidden charge called ‘‘color’’, carried by quarks permanently confined in nuc-
leons and other strongly interacting particles. All these interactions are supposed
to be mediated via the exchange of vector mesons with ‘‘minimal’” coupling,
similar to the well-known situation in electrodynamics. We are even in a position
to speculate that all the above interactions are really low-energy manifestations of
a single “‘grand unified’ interaction, whose simplicity will be directly revealed
in experiments only at energies above 10'7 GeV! Unfortunately, nothing reliable
can be said about the microscopic aspects of the gravitational interaction, due to
a total lack of experimental information. Important as it may be in an eventual
grand synthesis of all the interactions, we will have nothing to say about gravity
in this book.

Basic to the theoretical classification of particles is the assumption that
physical laws are invariant under Poincaré ‘transformations, i.e., Lorentz
transformations and space-time translations. A particle, be it ‘‘fundamental” or
composite, is defined as a state of a quantum field that transforms under
elements of the Poincaré group according to a definite irreducible representa-
tion. This implies that a particle has definite mass and spin, and that to each
particle is associated an antiparticle of the same mass and spin®. The assumption

Table 1.1 THE FOUR TYPES OF INTERACTIONS

Interaction Gravitational Weak Electromagnetic Strong
Manifestation Celestial B-radio- Evéryday Nuclear
mechanics activity world binding
Quantum graviton e photon ()
view | /om @-—--em- Fym, p v Q- Q2 | Bewr e
G
mass 1 mass 2 ) charge 1 charge2 nucleon
Static _ymum, e
potential | - r T8ent
_ 9:4: darr
r = distance - - k 43
between P 107" cm
sources
Couplin m,> 2 g?
strc‘:lgt: yﬁ: =576 x 107 4en = 1371036 =10
Gm,? =101 x 1075 "¢ 036) dmhe
m, = proton mass e = electron
charge

3E. P. Wigner, Ann. Math. 40, 149 (1934).
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of microcausality in local quantum field theory further implies a connection
between spin and statistics: particles with integer spin are bosons, and those with
half-integer spin are fermions®. The interactions among particles are required to
be invariant under the Poincaré group; this imposes non-trivial conditions on
possible local quantum field theories.’

In addition to Poincaré invariance, which is a space-time symmetry, there are
also internal symmetries having to do with space-time-independent transforma-
tions of particle states. The invariance of interactions under internal symmetry
groups gives rise to further quantum numbers that label particle states, such as
electric charge, baryon number, isospin, etc.

A partial list of known particles, classified according to mass, spin, internal
quantum numbers, and the types of interactions they have, is shown in Fig. 1.1.

“Hadrons” denote bosons and fermions having strong interactions, and
“leptons” denote fermions without strong interactions®>. Among the hadrons,
“mesons’ are bosons with baryon number 0, and *baryons” are fermions with
baryon number different from 0P. Of all these particles (apart from the photon
not shown in Fig. 1.1), only electrons and nucleons are relevant to our everyday
experience. One might go a little further and include neutrinos as important
catalysts for the generation of solar power, and u mesons are free gifts from
heaven®. Everything else is created primarily in high-energy accelerators.

Two striking features should be mentioned. First, all the leptons appear to be
point-like 6parti(:has, the latest experimental upperbound on their “‘radii”” being
107" cm.® This is particularly remarkable for the 7, which is about twice as
heavy as the proton. Secondly, there is a wild proliferation of hadrons. As noted
by Hagedorn’, a plot of the density of hadronic states against mass suggests an
exponential growth, as shown in Fig. 1.2.

If this trend continues to asymptotically large masses, there would exist an
‘“ultimate temperature” of about 160 MeV (2 x 10" K), beyond which no
system could be heated®. If the growth were faster than exponential, the
partition function of statistical mechanics would not exist. Thus, the density of
hadronic states seems to be growing at the maximum rate consistent with
thermodynamics.

Even if we had not detected experimentally a finite radius for the proton
(which we have, at about 107*? cm)®, the sheer number of the hadrons would
make it absurd to suppose that they are all “fundamental”. A key to the inner

* All observed bosons so far have strong interactions except the photon. Historically, leptons were so
named because they were light; but this is no longer true with the discovery of the 7.

" The reason that all baryons are fermions, while all mesons are bosons, comes from baryon
conservation in relativistic field theory, i.e., fermion fields must occur bilinearly in the Lagrangian,
but bosons can occur linearly.

€ “*Who ordered them?'” asked 1. 1. Rabi.

“R.F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That (W. A. Benjamin, New
York, 1964).

*N. N. Bogolubov, G. G. Logunov, and I, T. Todorov, Introduction to Axiomatic Quantum Field
Theory (W. A. Benjamin, Reading, Mass., 1975).

SD. P. Barber e al., Phys. Rev. Lent. 43, 1915 (1979).

7 R. Hagedorn, N. Cim. 56A, 1027 (1968).

8 K. Huang and S. Weinberg, Phys. Rev. Lett. 25, 895 (1970).

° R. Hofstadter and R. W. McAllister, Phys. Rev. 98, 217 (1955).
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structure of hadrons are the multiplet structures (e.g., 8 and 10 in Fig. 1.1)
identifiable with irreducible representations of an internal symmetry group
SU(3). This is the first lead to the notion of quarks as hadronic constituents,
namely, they form a fundamental representation of SU(3). A more detailed
discussion of the evidence for quarks and their interactions will be given in

Chapter 2.

((No-ot stotes )
unit mass

log

2r /
Q mcl/kT, /

(mZ+ m,2)574 /

kT, = 160 MeV /
To = 1.92 x 10" °K /
m.c? = 500 MeV //

/967 (1432 States )

1966 (971 States)

1964 (609 States)

[ [ L
800 1600 2400 (MeV)

Fig. 1.2 Number of hadronic states as function of mass
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1.2 Gauge Theories of Interactions

In the standard model, all the interactions are derived from a ‘‘gauge princi-
ple’” similar to that in electromagnetism. We recall that the coupling of the
electro-magnetic field A* to a charged matter field s can be derived through the
following prescription: replace 9%y in the matter Lagrangian by the covariant
derivative (8" + ieA*)¢, where e is the electric charge of . Before we “‘turn
on’’ the coupling (i.e., for e = 0), the matter Lagrangian must be invariant under
constant phase changes of ¥, called ‘‘global gauge transformations’”. What the
prescription does is to enlarge this symmetry to a ‘“‘local gauge invariance’’, i.e.,
invariance under arbitrary space-time dependent phase changes of ¥ (correlated
with corresponding gauge transformations of A®)Y. The original global gauge
invariance implies the existence of a conserved matter current j¥, and the
prescription leads to an interaction of the form ej*A,, in conformity with
Maxwell’s theory. Under the usual assumptions of canonical field theory, the
prescription is unique, and is called the ‘‘gauge principle’’.

We may restate the gauge principle as follows. Consider a matter system
originally invariant under a global U(1) group of gauge transformations. We
“gauge” this symmetry, i.e., enlarge it to a local U(1) gauge invariance. This
means that an independent U(1) gauge group shall be associated with each
space-time point. To do this it is necessary to introduce a vector gauge field, to
which the matter field current becomes coupled. The coupling constant is the
electric charge, the generator of U(1). The original global symmetry can be
gauged only if it is an exact symmetry.

We shall use a generalized gauge principle formulated by Yang and Mills'®,
which applies to a multicomponent matter field. Instead of U(1), the gauge
group is now a larger group of transformations that mix the different compo-
nents of the matter field. There will now be more than one gauge field—the
Yang-Mills fields. Their number is equal to the number of generators of the
gauge group. The relevant group for the weak, electromagnetic and strong
interactions is SU(2) x U(1) x SU(3). To define this group, we must first
describe the matter fields.

A well-known characteristic of the weak interactions is that they violate parity
conservation to a maximal degree!! by virtue of the V-A coupling'2. That is,
only left-handed components of the leptons are coupled in the charge-changing
sector; the right-handed components play a rather passive role—to provide
mass. Similarly, hadronic weak interactions can be accounted for by assuming
that quarks have the same kind of weak couplings. Thus, to the weak
interactions, the elementary entities are states of definite chirality®, which have

4 H. Weyl, Ann. d. Physik, 59, 101 (1919), first introduced the term “gauge transformation” in an
interesting but unsuccessful attempt to unify electromagnetism with gravity in a geometric theory, by
extending the non-integrability of the direction of a vector in curved space-time to a non-integrability
of its length (gauge) in an extended space called “‘gauge space”.

© Chirality is defined as the eigenvalue of ys, with ys = 1 corresponding to right-handedness, and
vs = —1 to left-handedness.

1°C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

'""'T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956); C .S. Wu et al., Phys. Rev. , 105, 1413
(1957).

12ZR. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
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zero mass. (An eigenstate of finite mass is a superposition of left and right-
handed states with equal weight). Glashow"? first proposed a unified gauge
theory of electroweak interactions based on a gauge group SU(2) x U(1), which
mixes different massless chiral states. However, the fact that physical particles
have finite masses seems to violate this symmetry. The seeming impasse was
overcome by Weinberg'* and Salam'® by appealing to the notion of “spon-
taneous symmetry breaking”. In the now-standard Weinberg-Salam model,
“Higgs fields” are introduced to implement this idea, though they may be
phenomenological parameters to be replaced by something more basic in a
future theory. It is fair to say that at present we have no deep understanding of
where masses come from.

The symmetries to be gauged refer to transformations among massless
quarks and leptons of definite chirality. They come in at least six “flavors” (the
sixth one being not yet experimentally confirmed). The lepton flavors are (e, v),
(e, v'), (7, v"), where the »’s denote massless left-handed neutrinos. The
quark flavors bear a one-to-one correspondence to the above: (u, d), (s, ¢),
(¢, b). The parentheses group the particles into three families, which are
indistinguishable copies as far as the weak interactions are concerned. In
addition, each quark flavor comes in three (and only three) “colors™, while
leptons have no color. Thus, the elementary particles are

. (f=1,...,6) (flavor index)
quarks: gy [(n =1,2,3) (color index)
leptons: [ (f=1,...,6) (flavor index)

It is understood that, for example, g5, denotes collectively (gg) s, and (q.) 4., the
right and left-handed components respectively, each regarded as an independent
particle.

We list the quarks and leptons more explicitly in Table 1.2, and postulate the
following internal symmetries:

(a) Color SU(3): With respect to the color index, the three quarks of each
flavor form a triplet representation of a ““color group” SU(3). The leptons are
color singlets®.

(b) Weak isospin SU(2): In each family, the left-handed components of the
upper and lower particles (e.g., v and e; ) form a doublet representation of a
“weak isospin group” SU(2). All right-handed particles are SU(2) singlets.

(c) Weak hypercharge U(1): There is a U(1) symmetry, called “weak hyper-
charge”, associated with simultaneous phase changes of each particle. The
relative phases are fixed by definite ‘“weak hypercharge” assignments.

The gauge group is then SU(2) x U(1) x SU(3), a direct product of the three
mutually commuting groups defined above. Gauging this group necessitates the

fRabi’s question on p. 3 can be generalized, but remains unanswered.
& This means that the theory is invariant under the group in question, and that the particles transform
under the group according to the representations specified.

135, L. Glashow, Nucl. Phys. 22, 579 (1961).

'4'S. Weinberg, Phys. Rev. Lest. 19 1264 (1967).

'S A. Salam, in Elementary Particle Theory, ed. N. Svarthholm (Almquist and Wiksell, Stockholm,
1968).



