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Preface

This book is based on lecture notes of courses on ordinary differential
equations which I have given from time to time for advanced under-
graduates and graduate students in mathematics, physics, and engineering.
It assumes a knowledge of matrix theory and, if not a thorough knowledge
of, at least a certain maturity in the handling of functions of real variables.

I was never tempted to scatter asterisks liberally throughout this book
and claim that it could serve as a sophomore—junior-senior textbook, for
I believe that a course of this type should give way to basic courses in
analysis, algebra, and topology.

This book contains more material than I ever covered in one year but
not all of the topics which I treated in the many courses. The contents of
these courses always included the subject matter basic to the theory of
differential equations and its many applications to other disciplines (as,
for example, differential geometry). A ‘*‘basic course” is covered in
Chapter I; §§ 1-3 of Chapter II; §§ 1-6 and 8 of Chapter III; Chapter IV
except for the “Application™ in § 3 and part (ix) in § 8; §§ 1-4 of Chapter
V; §§1-7 of Chapter VII; §§ 1-3 of Chapter VIII; §§ 1-12 of Chapter
X; §§ 1-4 of Chapter XI; and §§ 1-4 of Chapter XII.

Many topics are developed in depth beyond that found in standard
textbooks. The subject matter in a chapter is arranged so that more
difficult, less basic, material is usually put at the end of the chapter (and/
or in an appendix). In general, the content of any chapter depends only
on the material in that chapter and the portion of the *“basic course”
preceding it. For example, after completing the basic course, an instructor
can discuss Chapter IX, or the remainder of the contents of Chapter XII,
or Chapter XIV, etc. There are two exceptions: Chapter VI, Part I, as
written, depends on Chapter V, §§ 5-12; Part 1II of Chapter XII is not
essential but is a good introduction to Chapter I1I.

Exercises have been roughly graded into three types according to
difficulty. Many of the exercises are of a routine nature to give the
student an opportunity to review or test his understanding of the tech-
niques just explained. For more difficult exercises, there are hints in the
back of the book (in some cases, these hints simplify available proofs).
Finally, references are given for the most difficult exercises; these serve
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viii Preface

to show extensions and further developments, and to introduce the
student to the literature.

The theory of differential equations depends heavily on the “integration
of differential inequalities” and this has been emphasized by collecting
some of the main results on this topic in Chapter III and § 4 of Chapter
IV. Much of the material treated in this book was selected to illustrate
important techniques as well as results: the reduction of problems on
differential equations to problems on “maps” (cf. Chapter VII, Appendix,
and Chapter IX); the use of simple topological arguments (cf. Chapters
VIIL, § 1; X, §§2-7; and XIV, § 6); and the use of fixed point theorems
and other basic facts in functional analysis (cf. Chapters XII and XIII).

I should like to acknowledge my deep indebtedness to the late Professor
Aurel Wintner from whom and with whom I learned about differential
equations, first as a student and later as a collaborator. My debt to him
is at once personal, in view of my close collaboration with him, and
impersonal, in view of his contributions to the resurgence of the theory
of ordinary differential equations since the Second World War.

I wish to thank several students at Hopkins, in particular, N. Max,
C. C. Pugh, and J. Wavrik, for checking parts of the manuscript. I also
wish to express my appreciation to Miss Anna Lea Russell for the excellent
typescript created from nearly illegible copy, numerous revisions, and
changes in the revisions.

My work on this book was partially supported by the Air Force Office
of Scientific Research.

PHILIP HARTMAN

Baltimore, Maryland
August, 1964
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Chapter I

Preliminaries

1. Preliminaries

Consider a system of d first order differential equations and an initial
condition

(1.1) Y =fty), ylto) = Yo

wherey’ = dyldt,y = (4, ...,y and f = (f*,..., f9 are d-dimensional
vectors, and f (1, y) is defined on a (d + 1)-dimensional (¢, y)-set E. For
the most part, it will be assumed that fis continuous. In this case, y = (1)
defined on a r-interval J containing ¢ = ¢, is called a solution of the initial
value problem (1.1) if y(ty) = y,, (¢, ¥(2)) € E, y(¢) is differentiable, and
y'(t) = f(1,y(t)) for teJ. 1t is clear that y(r) then has a continuous
derivative. These requirements on y are equivalent to the following:
Y(to) = yo, (¢, y(t)) € E, y(¢) is continuous and

t
(1.2) y(1) = Yo +f f(s, y(s)) ds
to
fortelJ. ’
An initial value problem involving a system of equations of mth order,
(1.3) 2™ = F(t,2,2",...,2"™ V), 2 zy) = 2" forj=0,...,m — 1,

where 2" = d’2/dr’, z and F are e-dimensional vectors, and F is defined
on an (me + 1)-dimensional set E, can be considered as a special case of
(1.1), where y is a d = me-dimensional vector, symbolically, y = (z, 2%,
..., 2"1) (or more exactly, y = (2}, ...,2°%2", ..., 2%, ..., 2¢"D));
correspondingly, f(t, y) = (z', ..., 2™V, F(t,y)) and y, = (2, 2%, .~ .,
z{{1). For example, if e = 1 so that z is a scalar, (1.3) becomes

yll=y2,""ym—ll=ym’ ym'=F(t’yl,""ym)’
Yt =25  forj=1,...,m,

where y! =z, 42 =2/,...,y™ = (™D,

1



2 Ordinary Differential Equations

The first set of questions to be considered will be (1) local existence
(does (1.1) have a solution y(t) defined for # near 7,?); (2) existence in the
large (on what ¢-ranges does a solution of (1.1) exist?); and (3) uniqueness
of solutions.

The significance of question (2) is clear from the following situation:
Let y,f be scalars, f(#,y) defined for 0<¢=<1,|yl 1. A solution
y = y(t) of (1.1), with (#o, y,) = (0,0), may exist for 0 =7 =< 4 and
increase from 0 to 1 as 7 goes from 0 to }, then one cannot expect to have
an extension of y(¢) for any ¢ > }. Or consider the following scalar case
where f(, y) is defined for all (¢, ):

(1.4) y=9 Y0 =c(>0).

It is easy to see that y = ¢/(1 — ct) is a solution of (1.4), but this solution
exists only on the range —o <t < l/c, which depends on the initial

condition.
In order to illustrate the significance of the question of uniqueness, let

y be a scalar and consider the intial value problem
(1.5) ¥ =W y0)=0.

This has more than one solution, in fact, it has, e.g., the solution () = 0

(t-c)?

S

c t

Figure 1.

and the 1-parameter family of solutions defined by y(1) = 0 for r < ¢,
y(t) = (t — ¢)*/4 for t = ¢, where ¢ = 0; see Figure 1. This situation is
typical in that if (1.1) has more than one solution, then it has a “con-
tinuum’’ of solutions; cf. Theorem II 4.1.

2. Basic Theorems

This section introduces some conventions, notions and theorems to be
used later. The proofs of most of the theorems will be omitted.



Preliminaries 3

The symbols O, o will be used from time to time where, e.g., f(1) =
O(g(1)) as t — oo means that there exists a constant C such that | f(1)] =
C|g(2)| for large ¢, while f(¢) = o(g(t)) as t — oo means that C > 0 can be
chosen arbitrarily small (so that if g(z) # 0, f(¢)/g(t)—0 as t — o0).

“Function’ below generally means a map from some specified set of
a vector space R into a space R?, not always of the same dimension. R?
denotes a normed, real d-dimensional vector space of elements y =
(%, ...,%% with norm |y|. Unless otherwise specified, |y| will be the
norm

(2.1) lyl = max (|9, . . ., [¥*]),

and |y| the Euclidean norm.

If y, is a point and E a subset of R then dist (y,, E), the distance from
Y, to E, is defined to be inf |y, — y| for y € E. If E;, E, are two subsets
of R, then dist (E,, E,) is defined to be inf |y, — y,| for y, € E,, y, € E,,
and is called the distance between E, and E,. If E, (or E,) is compact and
E,, E, are closed and disjoint, then dist (E;, E,) > 0.

If E is an open set or a closed parallelepiped in R?, fe CE),0 = n <
oo, means that f(y) is continuous on E and that the components of f have
continuous partial derivatives of all orders k < nwithrespecttoy?, ..., %%

A function f(y,2) = f(¥", ..., 9% 2%, . z‘) defined on a (y, 2)-set E,
where y € R, is said to be uniformly Lipschztz continuous on E with respect
to y if there exists a constant K satisfying

22 1fy,2) =2 =Ky — 9l forall (y,,2)€E

with j = 1, 2. Any constant K satisfying (2.1) is called a Lipschitz constant
(for fon E). (The admissible values of K depend, of course, on the norms
in the f- and y-spaces.)

A family F of functions f(y) defined on some y-set E = R? is said to be
equicontinuous if, for every e > 0, there exists a 6 = 6, > 0 such that
[f(y1) — f(y2)] = € whenever y;, 9, €E, |y, — 1y, =96 and fe F. The
point of this definition is that ., does not depend on f but is admissible
for all fe F. The most frequently encountered equicontinuous families F
below will occur when all f € F are uniformly Lipschitz continuous on E
and there exists a K > 0 which is a Lipschitz constant for all fe F; in
which case, d can be chosen to be 0 = ¢/K.

Lemma 2.1. If a sequence of continuous functions on a compact set E
is uniformly convergent on E, then it is uniformly bounded and equicontinuous.

Cantor Selection Theorem 2.1. Let fi(y), fo(¥),... be a uniformly
bounded sequence of functions on a y-set E. Then for any countable set
D < E, there exists a subsequence f,\¥), f,(¥), . .. convergent on D.
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In order to prove Cantor’s theorem, let D consist of the points ¥, ¥, . . . .
Also assume that f,(y) is real-valued; the proof for the case that f,(y) =
(fi®), . . ., f,%(¥)) is a d-dimensional vector is similar. The sequénce of
numbers fi(y), (%), . . . is bounded, thus, by the theorem of Bolzano-
Weierstrass, there is a sequence of integers n,(1) < n,(2) < ... such that
lim f,(y,) exists as k — oo, where n = n,(k). Similarly there is a sub-
sequence ny(1) < ny(2) < ... of my(1), my(2), . . . such that lim £, (y,) exists
as k — oo for n = ny(k). Continuing in this fashion one obtains successive
subsequences of positive integers, such that if n,(1) < n,(2) < ... is the
jth one, then lim f,(y,) exists on k — oo, where n = nj(k)andi =1, ..., /.
The desired subsequence is the “diagonal sequence” n(1) < ny(2) <
ny(3) < .... Variants of this proof will be referred to as the “standard
diagonal process.”

The next two assertions usually have the names Ascoli or Arzela
attached to them.

Propagation Theorem 2.2. On a compact y-set E, let f,(y), f2(y), . . . bea
sequence of functions which is equicontinuous and convergent on a dense
subset of E. Then f,(y), fy(), . . . converges uniformly on E.

Selection Theorem 2.3. On a compact y-set E = R?, let f(y), fo(¥), . . .
be a sequence of functions which is uniformly bounded and equicontinuous.
Then there exists a subsequence f,)(¥), fux(¥), ... which is uniformly
convergent on E.

This last theorem can be obtained as a consequence of the preceding
two. By applying Theorem 2.3 to a suitable subsequence, we obtain the
following:

Remark 1. If, in the last theorem, y, € E and f; is a cluster point of the
sequence f;(¥o), /2(%o), - - . , then the subsequence f,,)(¥), fr2)(#), . . . in the
assertion can be chosen so that the limit function f(y) satisfies f(y,) = fo.

Remark 2. If, in Theorem 2.3, it is known that all (uniformly) con-
vergent subsequences of f,(¥), fo(¥), . . . have the same limit, say f(y), then
a selection is unnecessary and f(y) is the uniform limit of f,(y), fo(%), . . . .
This follows from Remark 1.

Theorem 2.3 and the following consequences of it will be used
repeatedly.

Theorem 2.4. Lety, f € R* andfy(t, y), fi(t, y), fo(t, ¥), . . . be a sequence
of continuous functions on the parallelepiped R : ty <t =ty + a,|y —
Yol = b such that

(2.3) Solt,y) = lim £, (1, y) uniformly on R.

Let y,(t) be a solution of

(2.4, Y =£0ty), yt) =Y,
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on [ty, to + al, wheren = 1,2, ..., and
(2.5) t, —to, Yo — Yo as n— oo,

Then there exists a subsequence Y,u(t), Ynx)(t), ... which is uniformly
convergent on [t t, + al. For any such subsequence, the limit

(2.6) Yo(t) = lim y,,5(1)
k-
is a solution of (2.4,) on [ty, ty + a). In particular, if (2.4,) possesses a
unique solution y = y(t) on [t,, t, + a, then
2.7 Yo(t) = lim y,(f) uniformly on [t,, £, + a].
n—wx

Proof. Since f,, f5, . . . are continuous and (2.3) holds uniformly on R,
there is a constant K such that |f,(s,%)| =<K for n=0,1,... and
(t,y) € R; Lemma 2.1. Since |y,'(#)] = K, it is clear that K is a Lipschitz
constant for y,, ¥, . . . , so that this sequence is equiconfinuous. It is also
uniformly bounded since |y,(t) — %/ = b. Thus the existence of uni-
formly convergent subsequences follows from Theorem 2.3. By (2.3),
Lemma 2.1, and the uniformity of (2.6), it is easy to see that

fn(k)(t’ yn(k)(t)) _’fo(f, y(,))

uniformly on [f,, t, + a] as k — co. Thus term-by-term integration is
applicable to

Yalt) = Yy, +£ Ju(s, y,(s)) ds

where n = n(k) and k — oo. It follows that the limit (2.6) is a solution of
(2.4,).

As to the last assertion, note that the assumed uniqueness of the solution
Yo(r) of (2.4,) shows that the limit of every (uniformly) convergent sub-
sequence of y,(¢), y5(?), . . . is the solution y,(¢). Hence a selection is un-
necessary and (2.7) holds by Remark 2 above.

Implicit Function Theorem 2.5. Let x, y, f, g be d-dimensional vectors
and z an e-dimensional vector. Let f(y, 2) be continuous for (y, z) near a
point (yy, z,) and have continuous partial derivatives with respect to the
components of y. Let the Jacobian det (3f7[0y*) # O at (y, 2) = (Yo, 2)-
Let zy = f(y,,20). Then there exist positive numbers, € and o, such that if
x and z are fixed, |vt — x| < 0 and |z — z,| < 0, then the equation x =
Sy, 2) has a unique solution y = g(x, 2) satisfying |y — y,| < . Further-
more, g(x, z) is continuous for |x — x| < 6, |z — 2| < & and has continuous
vartial derivatives with respect to the components of x.

For a sharper form of this theorem, see Exercise II 2.3.
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3. Smooth Approximations

In some situations, it will be convenient to extend the definition of a
function £, say, given continuous on a closed parallelepiped, or to approxi-
mate it uniformly by functions which are smooth (C* or C®) with respect
to certain variables. The following devices can be used to obtain such
extensions or approximations (which have the same bounds as f).

Let f(z, y) be defined on R:tg St =1, [y| = b and let [f(1, y)| = M.
Let f*(z, y) be defined for fy = ¢ < ¢, and all y by placing f*(¢, y) = f(z, v)
if ly| = b and f*(1, y) = f(¢, by/ly]) if ly| > b. It is clear that f*(z, y) is
continuous for g = t < t,, y arbitrary, and that | f*(r, y)| = M. In some
cases, it is more convenient to replace /* by an extension of f which is 0 for
large |y|. Such an extension is given by f°(t, y) = f*(¢, ¥)¢°(ly|), where
¢%s) is a continuous function for ¢ = 0 satisfying 0 < ¢%s) =1 for
§Z0,¢%s)=1for0<s=<b,and ¢%s) =0fors = b + 1.

In order to approximate f(¢, ) uniformly on R by functions f<(¢, y)
which are, say, smooth with respect to the components of ¥, let ¢(s) be a
function of class C* for s = 0 satisfying ¢(s) > 0 for 0 <s < 1 and
@(s) = 0 for s = 1. Then there is a constant ¢ > 0 depending only on
@(s) and the dimension d, such that for every € > 0,

+ o + o
G.1) CE_df » f P2 [yl dyt . .. dyf = 1,
where jly|| = (Z |y*[?)* is the Euclidean length of y. Put
' + o0 + o
3.2) f«y = Ce_df o f fot (e 2 |ly — 5> dpt . . . dnf?,
where n = (7%, . . ., 1%, so that
+o0 +o0 %
(3.3) fty = ce‘”‘f - [ Ly — (e Inl®) dn* . . . dn®.

Since f<(z, y) is an “average” of the values of f° in a sphere || — y| = ¢
for a fixed ¢, it is clear that f¢ —f° as ¢ — 0 uniformly on #t, S t < 4, 9
arbitrary. Note that [f€| = M for all € > 0 and that f¢(t,y) = 0 for
lyl = b + 1 + €. Furthermore, f*(#, y) has continuous partial derivatives
of all orders with respect to %%, . . ., ¥°.

The last formula can be used to show that if f°(, y) has continuous
partial derivatives of order k& with respect to %, ..., %% then the corre-
sponding partial derivatives of (¢, y) tend uniformly to those of f*, y)
as e — 0.



