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Preface

Eighty years ago, the cellular world opened up. The electron
microscope granted us, for the first time, a detailed perspective
of basic cellular structures, and the ultracentrifuge allowed us
to biochemically isolate and characterize fractions of cytoplas-
mic and nuclear material. Geneticists could investigate the
relationship between the ever-shifting chromosomal structure
and the molecular mechanisms of genetic inheritance—an
effort that culminated with the triumphant revelation of the
structures of DNA and RNA and a translation of the genetic
code.

But we have come a long way from there. We have per-
fected our understanding of genes themselves, adjusting our
definition from “determinants of a genetic phenotype,” to
“protein-encoding segments of DNA,” and now, more pre-
cisely, “units of genomic information required for the tran-
scription of functional messenger RNA or noncoding RNA.”
And we are still learning about the proteins these mRNAs
produce. The RSCB Protein Data Bank (PDB) was established
in 1971 as an international repository for structural data, but
it did not truly begin to grow until the early 1990s. Now, in
2010, it holds more than 60,000 structures and is expand-
ing at the rate of about 7,000 structures per year. For now,
X-ray crystallography and nuclear magnetic resonance are the
only techniques available for the determination of macromo-
lecular structures at high resolution. Important advances in
other methods, however—including visualization of fluores-
cently tagged proteins in living cells and new types of electron
microscopy—are describing cellular structures and processes
in ever-increasing detail.

What this all means is that the scope of biological questions
that can be asked has been fundamentally changed. The new
field of structural genomics has enabled us to relate increased
structural resolution to functional changes, providing powerful
insights at deeper levels of understanding. With our growing
ability to process huge data sets, complete characterizations of
cellular structures such as the nuclear pore complex and the
centrosome, which are constructed from hundreds of proteins,
may soon be attainable.

Perhaps most exciting is the combination of structural
and mechanistic information with developments in genet-
ics, biochemistry, and physiology—the primary vision of the
emerging field of systems biology. Most cell biologists today
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recognize that only a comprehensive approach to research,
from the nuclear pore complex to the extracellular matrix,
will begin to lift the veil from the cellular processes underlying
cystic fibrosis, epilepsy, and cancer.

Any cell biology textbook must provide a current per-
spective of the structure, function, and regulation of bio-
logical systems, but in today’s world it is imperative that
we also present the subject in the context of biochemistry
and molecular biology, genomics; histology and pathology,
and physiology. Thoroughly revised and updated, Lewin’s
CELLS, Second Edition, turns a new and sharper lens on the
fundamental units of life.

Audience

This second edition, expanded and updated from Benjamin
Lewin’s CELLS, is geared for advanced undergraduate and
graduate students taking a first course in cell biology. A key ob-
jective in developing this book was to present the concepts and
mechanisms underlying cell structure and function, gleaned
from decades of research, in a format that provides students
with the information necessary for a solid foundation in cell
biology, without overwhelming them with too much detail.
The major goal of the team of lead editors and 26 expert au-
thors has been to incorporate the current research in the field,
thoroughly cover each topic, and provide ample illustrations
of cellular processes at the molecular level—but without be-
ing unwieldy.

New and Key Features

Lewin’s CELLS, Second Edition, covers the structure, organiza-
tion, growth, regulation, movement, and interactions of cells,
with an emphasis on those in the eukaryotic domain. These
topics are presented in 21 chapters grouped into seven parts,
beginning with the definition of a cell, providing background
on basic cellular processes, continuing on to the components
of cells and the regulation of cell functions, and ending with
cell diversity. Plant cells and prokaryotic cells are covered in
separate chapters to emphasize their diversity while highlight-
ing the properties shared by all cells.



Areas of New Coverage

Chapters from the first edition were thoroughly updated and
revised by their original authors, 26 experts in diverse areas
of cell and molecular biology and biochemistry.

This second edition also includes several entirely new
chapters:

Chapter 2, Bioenergetics and Cellular Metabolism

Chapter 3, DNA Replication, Repair, and Recombination

Chapter 4, Gene Expression and Regulation

Chapter 5, Protein Structure and Function

The following list highlights some other areas of key con-
tent updates:

e Chapter 9, Nuclear Structure and Transport, discusses
the dramatic increase in our understanding of nuclear
pore complex structure, organization, and biogenesis,
and the nature of the molecular environment found
in the central channel of the NPC, which ensures
selectivity in transport. Also updated substantially
is the discussion of RNA export, focusing on recent
advances in our understanding of export of mRNA,
tRNA, ribosomal subunits, and microRNAs.

¢ Chapter 10, Chromatin and Chromosomes, now con-
tains an extensive discussion of histone variants and
the roles they play in chromosome segregation, tran-
scription, and DNA repair.

e Chapter 13, Intermediate Filaments, shows how muta-
tions in keratin genes have been linked to skin blister-
ing diseases.

e Chapter 14, Mitosis, explains how errors in chromo-
some attachment to the mitotic spindle are detected
and corrected. It also discusses mitosis as a pharmaco-
logical target for development of anticancer drugs.

e Chapter 1’5, Cell Cycle Regulation, explains the mecha-
nisms responsible for cell proliferation and the way
these mechanisms are controlled to prevent chromo-
some damage.

e Chapter 16, Apoptosis, includes an expanded discus-
sion of the inflammasome, a structure that senses dan-
ger signals and responds to them.

e Chapter 18, Principles of Cell Signaling, features a dis-
cussion of Abl and the development of inhibitors and
resistance in the treatment of chronic myelogenous
leukemia. The authors have also added improved
protein structures that illustrate important regulatory
principles.

e Chapter 19, The Extracellular Matrix and Cell Adhesion,
discusses the role of the extracellular matrix during the
evolution of multicellularity. It also contains an ex-
panded discussion of various integrin-based complexes
in vivo.

e Chapter 21, Plant Cell Biology, covers newly discov-
ered proteins that predict the plane of cell division. It

also includes advances showing that microtubules pro-
vide tracks for the movement of cellulose-synthesizing
enzymes.

Design

The design of Lewin's CELLS, Second Edition, is specifically in-
tended to enhance pedagogy. Chapters are divided into sec-
tions with declarative titles that emphasize the main points.
Each section begins with a set of Key Concepts that enable
readers to grasp the important ideas at the outset. To stimulate
students’ interest in future work, chapters include a section
called What’s Next? that describes some of the interesting
questions that researchers are tackling. Key review articles
have been listed for students interested in the experiments
that led to the current understanding of each topic, and ad-
ditional references to original research papers and reviews are
available on this book’s Student Companion Web Site. Each
chapter in Lewin's CELLS, Second Edition, now includes several
Concept and Reasoning Checks, allowing students to test
their understanding of the material just presented. Pedagogy
has also been enhanced by adding special feature boxes to
highlight Medical Applications, Historical Perspectives,
and Methods and Techniques used to study cell processes
(for a list of these features, see page xvii).

The artists, in collaboration with the authors and editors,
have developed the illustrations to be as self-explanatory
as possible, with such features as text boxes that lead the
reader through a figure. Liberal use of well-labeled micro-
graphs and molecular structures helps students to recognize
cellular components and understand relationships between
structure and function. Whenever possible, the schematic
figures take into account the relative sizes of molecules.
Colors and molecular shapes, the latter based on atomic
structures where known, are used in a consistent manner
throughout the book.

Supplements to the text

Jones and Bartlett Publishers offers an impressive array of
ancillaries to assist instructors and students in teaching and
mastering the concepts in this text. Additional information
and review copies of any of the following items are available
through your Jones and Bartlett Publishers sales representa-
tive or by going to www.jbpub.com/biology.

For the student

The Student Companion Web Site we developed exclusively
for the second edition of this text, http://biology.jbpub.com/
lewin/cells, offers a variety of resources to enhance under-
standing of cell biology. Students will find chapter summaries
and study quizzes that help them to review the key concepts,
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as well as an interactive glossary, flashcards, and crosswords
to aid with memorization of key terms. The site also con-
tains a selection of interactive figures, animations, and videos,
visual aids that are essential to understanding the dynamic
nature of cells. These online images are indicated by the symbol
£ to the left of figure legends in this book. The interactive
figures include diagrams and micrographs with labels that
can be turned on and off as well as short videos with labels
showing the progression of key processes. For those students
who wish to explore topics in cell biology in greater depth, a
list of important research papers and reviews is also provided
for every chapter in the book, along with links to related sites
on the Web.

For the instructor

Compatible with Windows® and Macintosh® platforms, the
Instructor’s Media CD-ROM provides instructors with the fol-
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lowing traditional ancillaries:

e The PowerPoint® Image Bank provides the illustra-
tions, photographs, and tables (to which Jones and
Bartlett Publishers holds the copyright or has permis-
sion to reproduce digitally) inserted into PowerPoint
slides. Instructors can quickly and easily copy individual
images or tables into their existing lecture slides.

¢ The PowerPoint Lecture Outline Slides presenta-
tion package provides lecture notes and images for each
chapter of Lewin’s CELLS, Second Edition. Instructors
with the Microsoft® PowerPoint software can custom-
ize the outlines, art, and order of presentation.

¢ The Instructor’s Media CD also contains more than 350
interactive figures, animations, and videos.

A Test Bank (prepared by Esther Siegfried at Pennsylvania State
University, Altoona) is also available. The questions are prese-
nted in straight text files that are compatible with most course
man agement software.
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Abbreviations

Units
A

D or Da
g

h or hr
M

m

m or min
N

5

s or sec
v

Amino acids

Angstrom

Dalton

Gram

Hour

Molar concentration

Meter

Minute

Newton

Svedberg unit

Second

Volt

Ala Alanine
Cys Cysteine
Asp Aspartic acid
Glu Glutamic acid
Phe Phenylalanine
Gly Glycine

His Histidine
Ile Isoleucine
Lys Lysine

Leu Leucine
Met Methionine
Asn Asparagine
Pro Proline

Gln Glutamine
Arg Arginine
Ser Serine

Thr Threonine
Val Valine

Trp Tryptophan
Tyr Tyrosine

A Adenine or adenosine
ADP Adenosine diphosphate
AMP Adenosine monophosphate
cAMP Cyclic AMP

ATP Adenosine triphosphate
ATPase Adenosine triphosphatase
bp Base pair(s)

C Cytidine or cytosine

cDNA Complementary DNA

cbP Cytidine diphosphate
CMP Cytidine monophosphate
CcTP Cytidine triphosphate
DNA Deoxyribonucleic acid
DNAase Deoxyribonuclease

G Guanine or guanosine
GDP Guanosine diphosphate
GlcNAc N-Acetyl-o-glucosamine
GMP Guanosine monophosphate
GTP Guanosine triphosphate
AG Free energy change

kb Kilobases or kilobase pairs
Mb Megabases or megabase pairs
mRNA Messenger RNA

MW Molecular weight

Pi. Inorganic phosphate

PPi Inorganic pyrophosphate
RNA Ribonucleic acid

RNAase Ribonuclease

rRNA Ribosomal RNA

tRNA Transfer RNA

T Thymine or thymidine

U Uracil

ubp Uridine diphosphate

ump Uridine monophosphate
UTP Uridine triphosphate
Prefix

(Abbreviation) Multiple

mega (M) 10°

kilo (k) 10°

deci (d) 10t

centi (c) 1072

milli (m) 10°°

micro (1) 10-°

nano (n) 107

pico (p) 107"
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