eV NALAWLDND=

ot pmt

13.
14.
15.
16.

17.

18.
19.

PREFACE - - =~ = « = = = = =« =

Part I. Algebra

Matrix operations - - - - - - J. S. ROLLETT
Matrix inversion and solution of equations - J.S. RoLLETT
Application of matrix operations - - - J. S. ROLLETT
Algebra of least squares - - - - - J S ROLLEIT
Structure factor routines - - - - - J. S. ROLLETT
Least-squares routines - - - - - J. S. RoLLETT
Latent roots and vectors - - - - - J. S. ROLLETT
Applications of latent roots and vectors - - J. S. ROLLETT
Convergence of iterative processes - - - 1. S. ROLLETT
Fourier seriesroutines - - - - - 1 S, ROLLETT
Data reduction routines - - - - - C.K. Prourt

Part II. Statistics

General theory of statistics - - D.W.J. CRUICKSHANK"
Errors in Fourier series - - - D. W. J. CRUICKSHANK
Errors in least-squares methods- - D. W. J. CRUICKSHANK
Statistical properties of reciprocal spacc - - D. ROGERS
The scaling of intensities - - - - D. RoGers

Part III. Phase Determination

Probability methods for centrosymmetric crystals

J. and I. L. KARLE
Applications of the Sayre sign relationship M. M: WoOLFsON
Isomorphous replacement methods - - - K. C. HoLMEs

Part IV, Programming

Some crystallographic programs in FORTRAN - V.VanD
APPENDIX - - - - - - - - - - -
EXAMPLES- - - - - - - - - - -
ANSWERS TO EXAMPLES - - - - S
REFERENCES - - - - - - - - - -
InDEX - - - - - - - S

vii

13
22
32
38
47
57

73
82

107
112
117
133

151
166
183

207

221
225
233

251



PART 1

ALGEBRA




.



CHAPTER 1

MATRIX OPERATIONS

MATRIX NOTATION

1. Suppose that we have a set of m quantities y,, . . ., y,,, each of whichis a
linear function of the n quantities x,, . . ., x,. We say that there is a linear
transformation expressed by the equations

Q11X+ ... +a,,,x-,,=_y:1
. A, 1)
alnlx1+ e +amxn=ym

The m x n quantities a;; are said to form the matrix of order mxn of this
transformation, and each of the g;; is called an element of the matrix. It is
conventional to write each element as

name Of matr ixrow number, column number

We can economise a little by writing the matrix elements separately from the
vector of quantities x,,..., x,

a1y Q13 ... Gy, Xy Y1
azy 4zz .- Azp X2 Y2
. . . ; _ : @)
anl amz e Qmn Xn Ym

When this notation is used it is understood that each element in the first
column of the factor on the left is multiplied by the element in the first row
of that on the right, the second column by the second row, and so on, and
that the answers are added to give equations of the form (1). We now need to
write each x, once, not m times.

2. We may wish to refer to eqns. (1) several times, treating them as a whole
and not singling out any particular part of them. It then becomes laborious

to write them in the form of eqns. (1) or (2) and we need a shorter form. We
get this by writing

‘.111 eos ‘_71n ’_‘1 .}’1
A X . xe| . y=| . (3)
aml e ‘amn Xn ym
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The symbol 4 is said to represent the matrix of order m x n, i.e. m rows and
n columns, and x and y are called column vectors. We can then rewrite
eqns. (1) as

Ax=y 4
This is called matrix algebraic notation and is so concise that we can write
manv sets of equations in the time otherwise needed for one set. We shall now
consider how we can manipulate this notation, and it will appear that the

rules are conveniently similar to those of elementary algebra, with certain
additions and exceptions.

MATRIX ADDITION
3. If eqns. (1) hold and also

?’11-"1"" ot byigXy = Z

: : : (5)
bpiXi+ ... + by, = 2,
Y1 '!'21 =W
: : (6)
YmF 2= Wy
so that
€11%y +... +€1,,x,, =W,
) ) ) (7
Cpi X1+ o Cp Xy =W,
We wish to be able to write
AX+Bx = (A+B)x=Cx=w (8)
and so
A+B=C e

The operation of forming the elements c,; is called adding the matrices
A and B. Evidently we have

(@14 +_bn)x1+ e +(a1,,-f-b")x,, =W

: . : (10)
(g b))%+ . (At bp) Xy = Wy

so that the rule for doing this is simply

€y =ay+tby (11)
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This is called an element-by-element operation, because each element of
C depends on one element only of 4 and one of B. For any such operation
it is obvious that both matrices must have the same number of rows and of
columns. When matrices satisfy the conditions for an operation they are
said to conform.

4. In Sect. 3 we defined matrix addition. Clearly we can regard — A as the
matrix with elements —a,;, then we can define matrix subtraction so that if

C=A~-B (12)
then
¢y = ay—by 13)
We can write
A+B+...+T=Z (14)
where
ay+byt...tty=z, (15)
and
A—B4+...-T=2Z (16)
where
ay—by+...~t; =2, an

We can also define the null matrix
O=A—A (13)

as the matrix with every element zero, and we have
A=0+4

(19)
B+A=A+B

Evidently the rules for matrix addition are just those for ordinary addition,
with the requirement that the matrices must be of the same order.

SPECIAL MATRICES
5, We have seen that it is convenient to have a special name for a matrix
with several rows and one column, since we called x in (3) above a column
vector. There are a number of special cases of this type. A matrix with one
row only is called a row vector. A matrix with one element only is called a
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scalar and obeys the rules for an ordinary number. A matrix whose element
a,, is zero unless i = j is called a diagonal matrix since it takes the form

[ x 0 0 ... 07
0x0 ... 0
00 x ... 0
0 00 ... «x (if m>n) (20)
0 0 0

A matrix of this type represents a transformation in which each element of
y = Ax depends on the corresponding element of x only and this is common
enough to be worth special consideration. A square matrix has equal numbers
of rows and of columns.

SCALAR MULTIPLICATION
6. If cqns. (1), (5) and (7) hold and if

Aprtpzy=w,
: . 1)
AVm+ B2y = Wy,
then we can write
AA+puB=C (22)
to mean
A+ pby; = ¢y (23)

This gives us the rule for multiplication of a matrix A by a scalar 4, and
also that for linear combination of matrices.

MATRIX MULTIPLICATION
7. If eqns. (1) hold and if we also have

byyyi+.. +bimym =z,

. . . 2%
bpuyi+. .. +bpym=2z,

then it follows by substituting for y,, ..., y, from (1), that

(b11811+by2a2, +...+ bim@m)x1+ ... +(b, 181t by mma)Xs = 24

| : : (25)
(bplall +bP2021+ <. +bpmam)'x1+ . +(bplaln+ v +bpmamn)xn =z,
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We can write the transformation of x into z in matrix notation as
Ax =y (26)
By=12z 27
We can also find a single transformation which produces z from x directly
Cx=z | (28)

Evidently the effect of the transformation C is the same as that of the
transformation A followed by the transformation B and we can write

Cx = BAx (29)
or
C = BA (30)

This indicates that the rule for multiplying matrices is the rule for calculating
the effect of successive transformations. From (25)

€11 = by1811+ 81281+ . . .+ D1l
Con =bp18y, +bpaas, 4+ ... +bpnlpa (31)
More generally for any 7 and j,

¢y =buay+bpay+ ... +byay (32)

since the last element of Cis Cpns C 18 @ p X n matrix, that is a matrix of p rows
and n columns, transforming the n quantities x,, . . ., x, into the p quantities
Zy, .« .y Z,» We have therefore

B X A = C
— - — - — —
by, bym g1 Gy 4y, €11 €1 C1a
| |
I |
by — - = bm | % l =€y —=—=¢y —~-cp [ (33)
| 1
! |
_b,,, b,,,,,_ Ot Gmy Gma | | Cmt Cyj Con |

The element ¢,; (ith row and jth column) is formed from the ith row of
B and the jth column of 4, by summing the products of corresponding
elements. For Band A to conform, B must have the same number of columns
as A has rows.

8. A simple example illustrates the use of matrix multiplication. Let the
coordinates of a point in space, referred to a right-handed set of axes, be
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(X3, X3, X3), see Fig. 1.1. Let A represent an anticlockwise rotation of 90°

about axis 1, then
i 0 0
A= 0 0 -1 (34)
0 1 0

This expresses the fact that this rotation leaves x, unchanged, gives a
new x, equal to minus the old x,, and a new x, equal to the old x,.

1 0 0 X X
0 0 ~1 X, |=| —x; (35
0 1 0 X3 X3

AT S m—
/, - /;1;
/ ~o A 7
/ |
s \\ / {
F——q ————————— 1 i
| /
| i
l ST
X,
[ 3 / (8 |
| / I |
| t |
| |
] X2 ! !
| 1 7
| P/
l A |/
b {7
| ‘/
e ————— y
Fic. 1.1,

Let B represent an anticl.éckwise rotation of 90° about axis 2, then

0o 0 1
B= 0o 1 0 (36)
-1 0 0

If C represents a rotation of 90° about axis 1 followed by a rotation of 90°
about axis 2 then

0 0 1 1 0 0 o 1 07

C=Bd=| 0 1 0 0 0 -1 |= 0 -1
{-1 0 o] [o 1 o] [-— 0 oJ
@3N

by the rules for multiplication given in Sect. 7.
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Now let F represent the operations done in the reverse order

1 0 o0 0 0 1 0 0 1
F=AB=| 0 0 -1 0 1 o0 l|=[1t o0 O
[o 1 0] [—1 0 o] I:o 1 o]
(38)

Obviously F % C, so that BA &= AB, and this will be so unless 4 and B
happen to be specially related. This demonstrates that for 90° rotations about
fixed axes at right angles a change in the order of the operations makes a
difference to the result. Also we have

0o 0 1 X X3
1 0 o x; |=| x (39)
0 1 0 X3 X2

The effect of B followed by A is to permute the coordinates, and it is well
known that this can be done by an anticlockwise rotation of 120° about an
axis making equal angles with the original three axes. The relevance of this
to the treatment of cubic symmetry will be clear, and we shall see later that
matrices can readily be used to express the effects of rotation operations in a
quite general way.

SCALAR PRODUCT

9. We saw in Sect. 7 that each element of a product matrix is the result of

multiplying together corresponding elements of a row and a column and

adding the answers. The result of a single set of operations of this type is

called a scalar product, and the calculation of scalar products, in one guise or

another, is an extremely common operation in calculations which can be

expressed in matrix form. Note that if the elements of the row are the same as

those of the column we form the sum of the squares of the elements in the
column

X4 »
[x; x5..-x.] =Y x} (40)

i=1
X
It will appear that this has a number of applications and we need a sign to
represent the operation of turning a column vector into a row vector so that

we can write down a scalar product concisely. This is a special case of the
matrix operation which we shall discuss in Sect. 10.

TRANSPOSITION
10. It is useful to have a notation for the matrix obtained by writing down
each row of a given matrix as the corresponding column of the result. This
B
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interchange of rows and columns is called transposition and the result is
known as the transpose A7 of the original matrix 4. (Many authors write
A’ for the transpose, but we shall use AT because the superscript T is a
mnemonic aid.) If we have

i1 43 ... Gy,
A=l . . . (41)
Gmi @uz --- Gmm
then
@13 -+ @m
@12 ... O
AT =| . . 42)
Qip oo O

If A is of order m x n (m rows and n columns) then A7 is of order nx m.
The transpose of a vector is a special case of this and we can rewrite
eqn. (40) as

This gives us a notation for a row vector and for a scalar product. Notice
that the transpose of a scalar is equal to the scalar. Thus x”.y = y”.x and
s0 on.

11. The transpose of the product of two matrices can be written in terms
of the transposed matrices. The i, j element of (BA)T is

(BA)T = j=(BA)y=Dbjay+... +buay (43)
where B and A are defined by eqns. (5) and (1). The i, j element of ATB” is
(ATBT), = aybjy+ -« . +Gmbym (44)
since (47);; = (4),. Hence we have

(BA)T = ATBT (45)

and this can readily be generalised to
(Z...BA)T = ATBT. .27 (46)

FORMS

12. From a given matrix it is possible to generate scalar quantities by means
of multiplications with vectors. For any matrix 4 of order mxn we can
calculate

L n
yAx= Y ¥ ayyx; )

i=1 j=1
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where y and x are column vectors of order m and n respectively. This is
called a bilinear form. If A4 is square and equal to its own transpose A7, we
can calculate

XTAx = i ]i Q)X Xy (48)

i=] j=1

which is called a quadratic form.
Notice that y"Ax = a scalar = x74y.

NORMS
13. The norm of a vector x is usually written | x | and defined as the
positive square root of x”.x. There are various norms in use for matrices.
The Euclidean norm is

f4l.= (-);;aﬁ)* (49)

Another commonly used norm is the maximum value of the norm of the
vector Ax for all x with | x || = 1 so that

fA] =max[}ax]/|x]] (50)

A discussion of norms is beyond our scope here, and we merely remark that
they can be used to express the overall magnitude of the elements of the
matrix, for such purposes as analyses of the effects of rounding errors on
numerical processes.

PARTITIONED MATRICES

14. For various purposes it may be convenient to makec a distinction
between different parts of a matrix. It may happen that we cannot handle the
whole matrix because it is too large for the storc of a computer, so that we
deal with several sections in turn. We may know that certain parts of the
matrix take a special form (c.g. that all elements in one area are zero) and
wish to express this fact. These needs can be met by writing a partitioned
matrix

Fm| -—--- (51)

Each part A4, B, C, D of the matrix F is called a submatrix. Evidently,
submatrices in the same row must have equal numbers of rows, and similarly
for columns. There is no other limit on the number of submatrices we may
have (up to mn, each of order 1 x 1). Partitioned matrices may be added and
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multiplied, provided that the appropriate submatrices have dimensions which
conform. We can write

| | |
A4, B||E | F (AE+BG) | (AF+BH)

c ' D G ! H (CE+DG) ! (CF+DH)
| | |

provided that the products AE, BG, ..., DH can be formed.



CHAPTER 2

MATRIX INVERSION AND SOLUTION
OF EQUATIONS

THE INVERSE TRANSFORMATION
1. Chapter 1 began with the linear transformation of a set of quantities
X1, ..., X, into another set y,, ..., y,.,

Q11 % +... +?1nxu =M

: : ) '6))

AuiXy+ ... + Xy = Vim
We shall now consider the reverse process of obtaining from this transforma-
tion one which enables us to derive x from y. Itis well known that no unique
exact solution can exist for arbitrary o, ; and y, unless we have m = n and we
shall for the rest of this chapter concern ourselves with this case only. We
rewrite (1) as

Ax=y @

where x and y are both vectors of order n and 4 is a square matrix of order
nxn, usually called a matrix of order n. If the transformation of y into x
exists, we can write it

By=x 3
It follows that
BAx = By = x
ABy=Ax=y )

The product matrix BA is equal to the product 4B in this special case and
is the matrix which leaves a vector unaltered. This matrix is called the
identity matrix I and is

10 ... 0
01 ...
o R ®
00 ... 1
13
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The matrix B is called the inverse or reciprocal of the matrix 4 and can be
written as 4-1, so that we have
Ax=y
A ly =x
M—l BA-1A=[ (6)
AAT'x =Ix=x=A"'4x

We note that a factor  can be inserted or suppressed anywhere that we
please in a matrix product, provided that we understand it to mean the
identity matrix of appropriate order.

2. We sawin Sect. 1 that the transformations (1) can be treated as equations
for x which can be solved provided that the inverse matrix 4! exists. The
condition for the existence of A—* is the same as the condition that the equa-
tions can be solved and we shall now consider what this is. If we have a pair
of equations

811%1+a12%2 = Y2
a31X1+823%2 = )
we find by simple elimination that
Xy = (Y1822~ ¥2812)/(811822—812021) (8)
%3 = (¥2011—¥1821)/(a11822—812921)

The solution can be obtained unless the denominator ;33— 10031

turns out to be zero. This quantity is called the determinant of the 2x2

matrix of the equations and the determinant of a square matrix A is written
| 4 | or det A. For a matrix of order 3 we can write

)

azz Q23 a1 823 a1 G2 ©)
G32 Q33 a3, 033 a3y 432

This rule can be extended to give the expression for the determinant of a
square matrix of any order and the solution of a set of simultaneous equa-
tions Ax =y of any order can be written in terms of quotients in which
det A is the denominator. It follows that 4-1 exists for any square matrix A4
provided that det A is not zero. If det A4 is zero, 4 is said to be singular,
otherwise it is said to be non-singular. We state without proof that for a
product

-—a

detA =a,,

det(AB...Z) =det A.detB. ...detZ (10)

A singular transformation Ax =y produces a vector y in which one or
more elements obey some law, whatever the vector with which we start. This
law might be

y3=0,all y, = 0,

n=1
Ya=Yysty, OF Y, = 121 Y
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and so on. In all such cases many initial vectors transform into the same
vector and we obviously cannot decide from the result which initial vector
was concerned. No unique inverse transformation can be found in these
circumstances.

3. We can add to the operations of matrix addition, subtraction and
multiplication that of matrix division. If A is non-singular we may pre-divide
B by A by forming A~'B and we may post-divide B by A4 by forming BA-1,
if B and A4 conform. The two results will not usually be the same.

4. We can form the reciprocal of a product by a reversal rule similar to
that for the transpose obtained in Chapt. 1, Sect. 11. We have

(ABXAB) ' =] = ABB 14} (11)
because we can cancel BB-! (= I), and then 44-(= I). Hence
(4B)"*=B"14"! (12)
This can readily be extended to
(4B...Z)y"'=2Z"' B 4! (13)

5. For a square matrix of order » we can extract a sub-matrix of order r by
deleting all except r rows and r columns (not necessarily the corresponding
rows and columns). Such a matrix is called a minor. We can then form the
determinant of the result. If one square sub-matrix of order r is non-singular
but all of order r+1 are singular, then the matrix is said to be of rank » and
nullity n—r. ‘

6. It is possible to construct matrices 4 which are such that
AAT = A4 = I so that A" = A-'. A matrix of this type is said to be
orthogonal for this reason. If the vector x represents the coordinates of a
point referred to equal orthogonal axes then x™x is the square of the distance
from the origin. Any rotation of axes about the origin leaves this unaltered
provided that the axes remain orthogonal. After a transformation A the new
(origin distance)® is x"ATAx. If ATA = I this is the same as x7x for all x.
The matrix A4 then represents a rotation of orthogonal axes.

1. For a set of quantities x,, ..., x, there may be a necessary relation

ey Xy tey X+ ...+, x, =0 (14

where the ¢, are constants not all of which are zero.
If this is so then x,, . . ., x, are said to be linearly dependent. If no such
relation exists they are linearly independent. This concept can be extended

to vectors so that x, . . ., x, are linearly dependent if and only if there exists
some relation

aXi+ey X+ ...+ x, =0 (15)
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where the ¢, are scalar constants at least one of which is not zero, as for (14)
above. If we write X as the matrix whose ith row is x] then we can rewrite
(15) as

"X =07, e"#£0 (16)

where ¢’ is the row vector whose ith element is ¢, We state without proof
that a square matrix is singular if and only if its rows (and its columns) are
linearly dependent.

SOLUTION OF SIMULTANEOUS EQUATIONS

8. We shall now consider practical methods of computing the solution
for a set of linear simultaneous equations taking into account the number of
items to be stored, the number of operations and the precision which can be
expected. We shall deal with equations Ax = b where 4 is a square matrix
of order n and x, b are vectors of order n. In this chapter we shall deal with
direct methods only, that is with methods which produce the answer in a
specified number of operations. Such methods can be classified as pivotal
condensations and matrix decompositions. We have mentioned in Sect. 2
that the solution can be obtained by calculation of determinants. This is
uneconomic in practice unless the order of the equations is very low.

9. Pivotal condensation is the process of eliminating the unknowns one by
one from successive equations until the system is transformed into Ux = ¢,
where U,; = 0 if i>j so that U is upper triangular. (This means that all
elements of U below the leading diagonal are zero.) We can then find x,
directly and ‘‘ back substitute ** for x,_,, . .., x; in turn, since at each step
one term alone in the equation concerned contains an unknown x;.

10. Matrix decomposition involves the * factorisation ” of A, which is the
determination of two non-singular matrices L and U which are such that
A = LU where L is lower triangular (all elements above the diagonal zero)
and U is upper triangular. We can then write Ux = y, so that Ax = LUx =
Ly = b and so determine y,, s, . . . , ¥, in turn. We then have Ux = y and
we can find x,, Xs—y, . . - , X, in turn,

GAUSS ELIMINATION

11. There are various ways of carrying out pivotal condensation and it
would be pointless to try to explain all of them. Instead we will describe the
single method of Gauss elimination, which can be used for any non-singular
matrix. The algorithm is
Set a counter i = 1, to count rows of the matrix;
Set j = i, to count the elements of column i, go to 18 if i = n;
Set a register / to zero, to store the largest element in column /;
Compare / and | a; |, if |a,, | > ,set! = | a; | and k = j;

i e



