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Transport Equations

The term “transport theory” is commonly used to refer to the mathemati-
cal description of the transport of particles through a host medium. For
example, such a theory might be used to describe the diffusion of neutrons
through the uranium fuel elements of a nuclear reactor, or the diffusion of
light photons through the atmosphere, or perhaps the motion of gas
molecules as they stream about, colliding with one another. (Note that in
the last example, one cannot really distinguish the “transported” particles
from the “host medium.”) Transport theory has become an extremely
important topic in physics and engineering, since particle transport
processes arise in a wide variety of physical phenomena. Much of the early
development of this theory was stimulated by astrophysical studies of
radiant energy transfer in stellar or planetary atmospheres."? More re-
cently, the subject of transport theory has been refined to a very high
degree for the description of neutron and gamma transport in nuclear
systems.’ The mathematical tools used to analyze transport processes also
have been applied with some success to problems in rarefied gas dynamics
and plasma physics.””'> And the list of such applications continues to
expand rapidly (as the examples listed in Table 1.1 and Figure 1.1 make
apparent).

The transport processes we wish to study can involve a variety of
different types of particles such as neutrons, gas molecules, ions, electrons,
quanta (photons, phonons), or waves (provided the wavelength is much
less than a mean free path), moving through various background media
such as the components of a nuclear reactor core, stellar or planetary
atmospheres, gases, or plasmas. Transport phenomena range from random
walk processes, in which particles stream freely between random interac-
tion events, to highly ordered collective phenomena, in which large num-
bers of particles interact in a correlated fashion to give rise to wave
motion. And yet all these processes can be described by a single unifying
theory—indeed, all are governed by the same type of equation. Hence the
mathematical tools needed to study these processes are quite similar,
although the information desired and the physical interpretation of the
solutions differ quite markedly from field to field.

We are concerned with the mathematical description of the transport of
particles in matter. Transport theory differs from the usual approaches
encountered in classical physics because it is a particle, not a continuum

01



20 TRANSPORT EQUATIONS
Table 1.1 O Applications of Transport Theory

Nuclear reactors
Determination of neutron distributions in reactor cores
Shielding against intense neutron and gamma radiation
Astrophysics
Diffusion of light through stellar atmospheres (radiative transfer)
Penetration of light through planetary atmospheres
Rarefied gas dynamics
Upper atmosphere physics
Sound propagation
~ Diffusion of molecules in gases
Charged particle transport
Multiple scattering of electrons
Gas discharge physics
Diffusion of holes and electrons in semiconductors
Development of cosmic ray showers

Transport of electromagnetic radiation
Multiple scattering of radar waves in a turbulent atmosphere
Penetration of X-rays through matter
Plasma physics
Microscopic plasma dynamics, microinstabilities
Plasma kinetic theory
Other
Traffic flow (transport of vehicles along highways)
Molecular orientations of macromolecules
The random walk of undergraduates during registration

theory of matter as, for instance, electromagnetism or fluid dynamics. The
concept of a continuous field still plays a significant role in transport
studies, but it now appears as a probability field, much as one encounters
in quantum mechanics.

To be more specific, the usual macroscopic fields encountered in physics
involve continuum descriptions. For example, in electromagnetic theory
one introduces the electric and magnetic fields E(r,7) and B(r,1) and the
charge and current densities p(r,¢) and j(r,#). In hydrodynamics the field
variables are the mass density p(r,7), local flow velocity u(r,r), and local
‘temperature T(r,7). However in the study of particle transport, the random
nature of particle interaction events obliges us to introduce instead a field
of probability densities or distribution functions. That is, we cannot
predict with certainty the exact number of particles in a certain region at a
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Fig. 1.1 O Examples of transport processes.

given time, but only the expected particle density N(r,?) defined by

N(r.1)d’ = €xpected number of particles in d 3 about
r at time ¢

This density would then be described by an appropriate partial differential
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equation such as the diffusion equation:

3 —V-DYNG)=S(r1)
It is important to stress here that N(r,#) characterizes only the expected or
average particle density at r and ¢ Our mathematical description of
particle transport processes involves such a statistical approach. We return
to consider this feature and provide a more precise definition of this
statistical average in the last section of this chapter.

One can distinguish between two classes of problems that arise in
transport theory. First are the direct problems in which one is given the
composition and geometry of the host medium and the location and
magnitude of any sources of particies and asked to determine the distribu-
tion of particles in the medium. This is the most common class of transport
problems. It arises in a host of applications, including nuclear reactor
theory, radiation transport, plasma physics, and gas dynamics. The second
and far more difficult class involves inverse problems in which one is given
the distribution and asked to determine characteristics of the medium
through which the particles have propagated or the sources that have
generated the particles. Such problems are encountered in fields such as
astrophysics in which one measures the intensity and spectral distribution
of light in order to infer properties of stars, and in nuclear medicine where
radioisotopes are injected into patients, and the radiation emitted by such
sources is used in diagnosis—for example, to determine whether a tumor is
present.

Although transport theory arises in a wide variety of disciplines, within
each field it has become a very specialized subject, almost an art, dealing
with the solution of a very particular type of equation. Furthermore, most
of the applications of transport theory have developed almost totaily
independent of one another. For example, the essential physics of trans-
port processes was already highly developed in the kinetic theory of gases
developed by Boltzmann more than a century ago. The mathematical
methods used to solve transport equations were developed to analyze
problems in radiative transfer during the 1930s. Despite this heritage, the
field of neutron transport theory has developed almost independently of
kinetic theory or radiative transfer, partly because of the highly specialized
nature of neutron transport problems in nuclear systems, but also partly
because of the enormous emphasis placed on this discipline in the atomic
energy program. Particular emphasis was directed toward the development
of accurate computational (computer-based) methods, most of which are
quite unfamiliar to physicists in other fields. '
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Hence there is a very strong incentive to unify the various approaches
used to analyze and solve transport problems in different fields. The task
of drawing together these applications and presenting a general, unified
theory of particle transport processes is one of the primary motivations for
writing this book.

1.1 O PARTICLE DISTRIBUTION FUNCTIONS O The ultimate
goal of transport theory is to determine the distribution of particles in a
medium, taking account of the motion of the particles and their interac-
tions with the host medium. Although knowledge of the particle density
N(r,r) would be sufficient for most applications, unfortunately there is no
equation that adequately describes this quantity in most physical situa-
tions. Therefore we must generalize the concept of the particle density
somewhat to account for more of the independent variables that char-
acterize particle motion. _

The state of a classical point particle can be characterized by specifying
the particle position r and velocity v. This level of description is usually
sufficient for describing the transport of more complicated particles (neu-
trons, photons, molecules, automobiles), since internal variables such as
spin, polarization, or structure usually do not influence the motion of the
particles as they stream freely between interactions—although such inter-
nal variables certainly influence the interactions between the particles and
the host medium. (Exceptions to this include the transport of polarized
light through an atmosphere'® and the transport of a polarized neutron
beam through a magnetic field.!* We indicate later how the theory can be
generalized to account for spin or polarization effects.) Therefore it
suffices to define a particle phase space density function n(r,v,7) that
depends only on the particle position and velocity:

n(r,v,1)d’r d*v = expected number of particles in d°r about
r with velocity in d%v about v at time ¢

This function contains all the information that is usually required for the
description of transport processes. For example, we can integrate n(r, v/
over velocity to obtain the particle density

N(r, )= fd’vn(r,v, 1)

In certaip ~' cases n(r,v,7) may be rather easy to calculate. For
example, if the particles are in thermal equilibrium at a temperature T
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then n(r,v,f) becomes just the familiar Maxwell-Boltzmann distribution
function

m \3/2 —~ myp?
)M () = nof 377 ) P(W)

where ny is the average number density of the particles. More generally we
are faced with solving a special type of equation for n(r,v,r) known as a
“transport” or “kinetic” equation. However it is usually possible to derive
such an equation to describe n(r,v,f) to a rather high degree of accuracy.

In kinetic theory” it is common to normalize n(r,v, ) by dividing through
by the particle density N(r,?)

n(r,v,t)

L= ———">
This terminology is useful because f(r,v,t) can then be identified as a
probability distribution or density function with a unit normalization:

fd3vf(r,v,t)=l

Both n(r,v,f) and f(r,v,t) contain information only about the expected
number of particles in a differential volume clement of phase space,
d’rd’v. Neither function provides any information about higher order
statistical correlations such as the “doublet” distribution f(r),v,,rv;;?)
characterizing the probability that two particles will be found simulta-
neously with coordinates in d’r,d’v;d’r,d’v,. Actually there is little inter-
est in such higher order correlations or fluctuations from n(r,v,?) for
random walk processes in which the particles of interest do not interact
and therefore can be correlated only by special types of source conditions
(e.g., the simultancous emission of two or more neutrons in a fission
reaction®). However such higher order phase space densities or distribution
functions are of major interest in collective processes that are dominated
by interactions (hence correlations) among particles.

It is sometimes convenient to decompose the particle velocity vector v
into two components, one variable characterizing the particle speed, and a
second corresponding to the direction of motion. The particle kinetic
energy, E=1 mo? is used frequently instead of the speed v. To specify the
direction of particle motion, we introduce a unit vector € in the direction
of the velocity vector v (see Figure 1.2)

=@, sinfcos¢p+@, sinfsing+¢, cosé
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RY
Fig. 1.2 00 The position and direction variables characterizing the state of a
particle.

where we have chosen to represent this direction unit vector in spherical
velocity-space coordinates (#.¢). The particle phase space density can then
be defined in terms of these new variables as

n(r, E,, )d*r dE d) = expected number of particles in 4% about
r with kinetic cnergy E in dE moving in
direction £ in solid angle 42

Integration over these velocity space variables would then take the form
don(r,v,t) = “doo? [*"de [ dBsinén r,o,Q,1
[ dunten= [ "o [ o [ sinonte 1)
=f°°d£fds“zn(r,5,fz,z)
0

where we have identified the differential solid angle d{2=sin8d@d¢. One
can easily transform back and forth between various sets of variables by
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noting:
. n(r, E, Q1) = ( )n(r,v, )
n(r,0,9.0)=cn(r.v,1)

n(r, E.O.1)= ( )n(rvﬂt)

where E=1 mv? and @=v/)v.

When the particle phase space density is written in terms of the variables
(r,E, 1) ,1), it 1s sometimes referred to as the angular density (since it
depends on the angles 8 and ¢ characterizing the direction of particle
motion) to distinguish it from the roial particle density N(r,1).

A closely related concept is the phase space current density function or
angular current density j(r,v,t), which is defined by

jr.v,0)dSd*v=vn(r,v,1)*dS d*c = expected number of particles
that cross an area dS per sec-

ond with velocity v in d% at
time ¢ (see Figure 1.3)

If this quantity is integrated over particle velocities, one arrives at a
definition of the particle current density J(r,t)

J(r,t)=fd3vj(r,v, 1)

<

VA
/

Fig. 1.3 [0 Particles incident on a surface element dS.
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— et

N

Fig. 1.4 [J Partial and total current densities.

Here, of course, J(r,r)*dS would be interpreted as the rate at which
particles pass through a differential surface area dS.

A similar concept is the partial current density J .(r,t), which char-
acterizes the rate at which particles flow through an area in a given
direction. That is, we define

J. (== f dvéj(r,v,1)

where &, is the unit normal to the surface, and the velocity space integra-
tion is taken over only those particle directions in the positive or negative
direction (see Figure 1.4). From this definition it is apparent that

& Jm)=J, (x,0)—J_(r,0)

In this sense, J(r,7) might be referred to as the “net” current density.

We have employed a consistent notation in which quantities that are
dependent on phase space or angle are denoted by lowercase symbols (e.g.,
n or j) and configuration space- or angle-integrated quantities are denoted
by uppercase symbols (N or J).

1.2 O DERIVATION OF A GENERIC FORM OF THE TRANSPORT
EQUATION O We now derive an exact (albeit formal) equation for the
phase space density n(r,v,f) characterizing a transport process by simply
balancing the various mechanisms by which particles. can be gained or lost
from a volume of material. That is, we begin by considering an arbitrary
volume V and attempt to calculate the time rate of change of the number
of particles in this volume that have velocities v in 4 3 (see Figure 1.5). If
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Fig. 1.5 0 An arbitrary volume ¥ with
ds surface area S.

we ignore for the moment macroscopic forces that might change the
trajectories of the particles in V, it is apparent that the only mechanisms
that can change the particle number are leakage through the surface of V,
collision events that change the particle velocities, or sources in V:

time rate change due change due

of change | = | to leakage |+ |to + | sources
of n through § collisions

We can express this balance condition mathematically as follows:

'Ei 3 A of 3 3 __a_’l 3
Y fvd ra(r,v,t)d"v Lds j(r,v,0)d v+de r( at) d’v

coll
+f d’rs(r,v,1)d’
v

where we have defined the source density function s(r,v,#) and the time
rate of change due to collisions (3n/87).,. If our choice of the arbitrary
volume does not depend on time, we can bring 3/9r inside the integral
over V. Furthermore we can use Gauss’s law to rewrite the surface integral
for the leakage contribution as a volume integral

fdS-j(r,v,z)=fd’rV-j(r,v,t)=fd3rV-vn(r,v,t)=fd’rv-Vn(r,v,t)
s v v v

where we have noted that Vevna(r,v,/)=v.Vn(r,v,f), since r and v are
independent variables. Thus our balance condition can be rewritten as
follows:

s, [ 90 L, _,(?_'_') _}=
fdrdv{at+vVn ). =0 (1.1)
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But since V is arbitrary, Eq. 1.1 can be satisfied for all ¥ only if the
integrand itself is identically zero:

% +v-Vn(r,v,t)=(%’—:—)m”+s(r,v,t) (1.2)
Hence we have arrived at an equation for the phase space density n(r,v,r).
This is the general form taken by the transport equations that characterize
particle transport processes in an enormous variety of applications.

We can give a somewhat shorter derivation of this equation (and relax
the assumption concerning macroscopic forces on the particles) by simply
equating the substantial derivative!® describing the time rate of change of
the local particle density along the particle trajectory to the change in the
local density due to collisions and sources

bn_(dm)
Df— a’ coll s

We can calculate Dn/ Dt explicitly as

Dn on dr on 0dv on on an F on
N R A R T A R

where we have introduced the obvious notation for the vector differentia-
tion operations: 9/9r=V (e.g., gradn=Vn=23n/0r). Therefore we find
that the transport equation takes the form

on 4y.on K on _(ﬁ_’z) +5
a[ coll

I m v

The source term s(r,v,7) in this equation is usually assumed to be
specified in advance; therefore it is independent of the solution n(r,v,r).
However in certain situations (e.g., neutrons generated in a fission reac-
tion) it may be convenient to allow the source to contain an “intrinsic”
component dependent on the phase space density n(r,v,?) itself.

To proceed further, we must be a bit more specific about the collision
term (0n/dt)., and this calls for a few more definitions, to enable us to
adequately describe collision processes. For the present we assume that
such collisions or interactions with the background medium occur instan-
taneously at a point in space. That is, we assume that particles stream
along until they suffer a collision, at which point they are instantaneously
absorbed or scattered to a new velocity. It should be apparent that such an
assumption would not be valid for processes in which the ranges of the
interaction forces are large, or in which the particle is absorbed, then
reemitted some time later. We patch up these deficiencies later.
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We now introduce the concept of a mean free path (mfp) to characterize
such “local” interaction events:

(mfp) '=Z(r.v)= prqbability of particle interactign per
unit distance traveled by particle of
velocity v at position r

We follow the customary terminology of radiation transport by referring to
the inverse mfp Z(r,v) as the macroscapic cross section characterizing the
interaction. This latter quantity can be related to the more familiar concept
of a microscopic interaction cross section ¢ by noting

2(r,v) = Ng(r)a(v)

where Np(r) is the number density of the background medium.

We must generalize this concept a bit to describe scattering processes or
interaction processes in which the incident particle is absorbed in the
collision event and several secondary particles are then emitted (e.g.,
nuclear fission events or the stimulated emission of light). Indeed, since
transport theory is essentially just a mathematical description of “multiple
scattering™ processes in which the particles of interest wander through a
medium, making numerous collisions as they go? it is important to
introduce the concept of a scattering probability function f(v'—>v) defined by

f(v'>v)d’v= probability that any secondary particles
induced by an incident particle with
velocity v’ will be emitted with velocity v
in d’v

Note that f(v'-v) is essentially just a transition probability characterizing
a change of state of the particle from v’ to v.

As a further characterization of such processes, we define the mean
number of secondary particles emitted per collision event, c(r,v), by

c(r,v)=mean number of secondary particles
emitted in a collision event experienced
by an incident particle with velocity v at
position r

It is also useful to define the collision kernel S(v'—sv) characterizing such
processes by

Z(r,v'—-v)=Z(r,v)c(r,v)f(r,v —>v)
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This describes the probability per unit distance traveled that an incident
particle of velocity v’ will suffer a collision in which a secondary particle of
velocity v is produced (which may be the original particle but with a new
velocity in a simple scattering event). Note that by definition

2(r,v)= f d*v'Z(r,v—v')

Again we stress that these definitions are useful only if the collision
events are localized and uncorrelated. For example, if the particles are
wavelike (e.g., photons or quantum mechanical particles), the interaction
events would have to be sufficiently well separated to ensure the loss of
phase information from one event to another—that is, mean free paths
must be much larger than the particle wavelengths. In a similar sense, the
mean free path must be much larger than the range of the interaction
forces characterizing the collision events.

These concepts can now be used to obtain an explicit form for the
collision term (3n/9r),,, appearing in the transport equation. First we note
that the frequency of collision events experienced by a particle of velocity
v is given by

vZ(r,v) =collision frequency

Hence the rate at which such reactions will occur in a unit volume can be
written as

vZ(r, v)n(r,v,r) =reaction rate density

If we now note that the rate at which particles of velocity v suffer
interactions that change their velocity or perhaps destroy the particle is
vZ(r,v) n(r,v,7), while the rate at which particles of different velocities v’
induce the production of secondary particles of velocity v is v'2(r, V—>v)

n(r,v,0)d%’, we can immediately identify the collision term in the trans-
port equation as

(@-) =fd3u’u’2(r, Vov)a(r,v, 1) — vZ(r,v)n(r,v,1)
ot coll

(If we recall the identification of =(r, v'>v) as essentially a transition
kernel, it is apparent that the collision term assumes a form reminiscent of
the master equation characterizing Markov stochastic processes.) We can
now write the general form of the transport equation as

on an F on N ,
a—t+v-3F+—"-1— . +vEn—fduvZ(v-—-»v)n(r,v,t)+s (1.3)




