Carbocationic - Polymerization -

JOSEPH P. KENNEDY

Institute of Polymer Science
The University of Akron
Akron, Ohio

ERNEST MARÉCHAL

Laboratoire de Synthèse Macromoléculaire Université Pierre et Marie Curie Paris, France

Copyright @ 1982 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

Kennedy, Joseph Paul, 1928-Carbocationic polymerization.

"A Wiley-Interscience publication."

Includes bibliographical references and index.

1. Polymers and polymerization. I. Maréchal,

Ernest, 1931— joint author. II. Title.

QD381. K38 547'.28 80-26366

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-471-01787-6

□ Preface □

This is an interdisciplinary book written for the organic chemist who wants to relate knowledge of cationic reactions of small molecules to the science of large molecules, for the physical chemist who wishes to apply basic chemical—physical principles to polymerization mechanisms, for the polymer scientist who wants comprehensive up-to-date critical information about a large segment of vigorously growing polymer science and technology, for the research entrepreneur who is on the lookout for well-defined but unexploited leads, for the industrial researcher who wants to survey the technology of cationic polymerization processes leading to useful products, and for the student who is searching for working relations between abstract ideas, contemporary research in polymer science, and, ultimately, some of today's important technologies.

If a change is slow, not sudden or abrupt, it is difficult to perceive that it is in progress; once the change is recognized it becomes a "quiet revolution." The area of cationic polymerization is undergoing such a quiet revolution right now. It will be some time before it is generally perceived as such because outlooks, like habits, change slowly. Indeed, our resolve to write this book, a most painful exercise, stemmed in part from our conviction that this quiet revolution should be exposed to the polymer community.

During the past decade the elucidation of cationic polymerization has undergone such a rapid increase and the exploitation of new mechanistic information in terms of new products and processes in the research laboratory was so rapid that serious students of this field had to reassess completely their views with regard to the capabilities, particularly preparative capabilities, of this discipline.

Polymer scientists and technologists at large know carbocationic polymerization as a well-established but colorless segment of polymer science offering some commercially attractive possibilities (witness butyl rubber) and allowing the preparation of some quaint structures (such as -CH₂CH₂C(CH₃)₂- by isomerization polymerization), but one that is better avoided because it is a bewildering, unmappable maze beset by some insurmountable experimental difficulties such as the necessity of working at very low (cryogenic) temperatures. It is one of the objectives of this book to dispel this completely false and distorted notion and to rejuvenate the field by showing by many examples the tremendous promise and unexploited possibilities offered by carbocationic polymerizations. In view of the

vIII □ PREFACE

very large number and variety of cationically responsive monomers, low cost and high efficiency of cationic initiating systems, usually rapid reactions, and modest investment required for cationic manipulations, the lack of entrepreneurship in exploiting cationic polymerization is rather surprising. One possible reason for lagging interest in cationic polyreactions may be two decades of colorless research mired in difficultly reproducible kinetic minutiae and fruitless basic investigations. Another factor is that quantum jumps such as Szwarc's discovery of "living" polymerizations or Ziegler and Natta's discovery of stereoregulating catalysts, discoveries that created unexpected new vistas in other areas of ionic polymerizations, eluded the field of carbocations.

Another objective of this book is to present a unified, interlocking, in many respects new view of carbocationic polymerization. Although select parts of this discipline have been reviewed in the past by several authors, the whole field as such has not yet been comprehensively and critically examined in a book written by one or two authors.

We start by asking, in Chapter 1, why carbocationic polymerizations? What is so special about this science? We find some unique answers in the fields of chemistry, structure-property relationships and technology. In the next chapter we define terms, describe basic concepts, and lay down foundations to be built on when we turn to the discussion of mechanisms. In Chapter 3 we proceed to phenomenology to acquaint the reader with what carbocationic polymerizations are by examining monomers, initiators, coinitiators, and solvents. The next, long chapter (4) concerns the chemistry and mechanisms of the important elementary events; initiation, propagation. chain transfer, and termination. In Chapter 5 on kinetics, an attempt is made to combine these mechanistic steps and kinetic expressions are examined. The following chapter on copolymerization and reactivity starts with a comprehensive compilation and evaluation of all monomer pairs copolymerized by carbocationic initiation and proceeds to a discussion of experimental and theoretical determinations of reactivity. A review of relative reactivity relations is given and the influence of experimental parameters on reactivity is examined.

In Chapter 7 carbocationic step-growth polymerizations are discussed. The following chapter examines in detail the chemistries leading to recently developed sequential (block and graft) copolymers. Chapter 9 is devoted to macromolecular engineering and a glance toward the future. We conclude that the time for tailoring physical-mechanical-chemical properties by carbocationic techniques (i.e., macromolecular engineering) has arrived and develop a framework for the synthesis of new sequential, functional, telechelic polymers. The book ends with a survey of industrial processes employing carbocationic polymerizations currently in use.

Our most sincere thanks to Dr. P. Borzel, Professor T. Higashimura, Dr. I. Puskas, and Dr. W. A. Vredenburgh, and co-workers for letting us have

PREFACE 🗆 ix

material prior to publication, and to Professor P. Sigwalt and Dr. T. Kelen for useful criticisms. Special thanks is due to Mrs. M. Israel for heroism during her most competent typing of our battle-scarred manuscript.

JOSEPH P. KENNEDY ERNEST MARÉCHAL

Akron, Ohio Paris, France November 1981

□ Contents □ ੑ

1	WHY	CARBOCATIONIC POLYMERIZATION?	1
	1.1	Advantages and Uses of Carbocationic Polymerization, 2	
	1.2	Problems, Challenges, and the Future, 5	
		References, 8	
2	DEFINITIONS, TERMINOLOGY, AND NOMENCLATURE		9
	2.1	Carbocations, Counteranions, and Carbocationic Polymerizations, 10	
	2.2	Initiators, Coinitiators, and Initiating Systems, 10	
	2.3	Abbreviation of Multicomponent Systems, 13	
	2.4	A Note on the Definition of Friedel-Crafts Halides, 13	
		References, 14	
3	PHENOMENOLOGY OF CARBOCATIONIC POLYMERIZATION 1		
	3.1	The Active Species, 16	
		The Nature of Polymerization-Active Carbocations, 16	
		Formation of Carbocations, 16	
		Relative Stability of Carbocations, 17	
		Structure Effects Influencing Carbocation Stability, 19	
		Carbocation Stability in Solution, 21	
		The Active Species in Carbocationic Polymerizations, 23	
		Ions and Ion Pairs, 23	
		Carbocations and Active Species in Propagation, 24	
		Pseudocationic Polymerizations, 26	
		Types of Electrophilic Reactions in Carbocationic Polymerizations, 29	

3.2 Monomers, 31

Electronic Characteristics of Cationic Monomers, 31 Steric Prohibition of Vinyl Cationic Polymerization, 33 Monomers Containing More than One Nucleophilic

Cationic Monomers, 36

3.3 Initiators, Coinitiators, and Initiating Systems, 36

Protic or Brønsted Acids, 56

Site capable of Polymerization, 36

Stable Cation Salts, 58

Friedel-Crafts Acid-Based Initiating Systems, 59

The Problem of Defining Friedel-Crafts Acids, 59

Acidity of Friedel-Crafts Acids and Nucleophilicity of Counteranions, 64

Reactivity of Friedel-Crafts Acid-Based Initiating Systems, 71

3.4 Solvents, 72

References, 75

4	THE CHEMISTRY	ЭF	F CARBOCATIONIC) P(OLYMERIZATION
---	---------------	----	-----------------	------	---------------

81

4.1 The Chemistry of Initiation, 82

Definitions and Scope, 82

Chemical Methods, 82

Two-Electron (Heteroclytic) Transpositions, 83

Brønsted (Protic) Acids, 84

Stable Carbenium Ion Salts, 90

Friedel-Crafts Acids, 95

Introduction Cationogen/Friedel-Crafts Acid
Systems □ Cationogen = Brønsted Acids □ Stopping
Experiments A General Scheme of Initiation with
Brønsted Acid/Friedel-Crafts Acid Systems Scop
and Limitation of Brønsted Acid
Initiating Systems Cationogen = Carbenium Ion
Source Initiation Details with RX/MeX _n
Systems Preparative Significance of RX/MeX.

Systems Cationogen = Halogen Cationogen = Miscellaneous Compounds BF ₃ OR ₂ Complexes Direct
Initiation by Friedel-Crafts Acids Halometalation: The
Sigwalt-Olah Theory Autoionization: The Korshak-
Plesch-Marek Theory Allylic Self-Initiation: The
Kennedy Theory Conclusions Relative to Direct Initiation
Miscellaneous Methods, 116
Inorganic Complexes I Iodine I Miscellaneous
Systems Including Acidic Solids
One-Electron (Homolytic) Transpositions, 120
Introduction, 120
Direct Radical Oxidation, 121
Charge Transfer Polymerizations, 122
Thermally Induced Charge Transfer Polymerization Photoinduced Charge Transfer Polymerization
Conclusions: Initiation by One-Electron
Transpositions, 135
Physical Methods, 137
High-Energy or Ionizing Radiation, 138
X-ray Initiated Carbocationic Polymerization, 138
Pulse Radiolysis, 140
UV Radiation, 140
Direct Techniques Including Ion Injection, 140
Indirect Techniques, 141
High Electric Fields: Field Emission and Field Ionization, 142
Electroinitiation, 144
Significant Contributions, 144
Conclusions on Electroinitiated Carbocationic
Polymerizations, 147
Conclusions: Initiation by Physical Methods, 148
Conclusions: Toward a Comprehensive View of Initiation of Carbocationic Polymerization, 152
Organization and Classes of Initiating Systems, 153
A Simplified View of Initiation, 156

4.2 The Chemistry of Propagation, 158

Overview, 158

Ionicity of the Propagating Species, 159 Effect of Electron Acceptors on Propagation, 163 Isomerization Polymerization, 165 Isomerizations by Bond (Electron) Rearrangement, 166 Intra-Intermolecular Polymerization. 166 Transannular Polymerization, 167 Polymerization by Strain Relief and Ring Opening, 168 Isomerization by Material Transport, 169 Controversial III-Supported Claims in the Field of **Isomerization Polymerizations, 178** Stereochemistry of Propagation, 180 Vinyl Ethers, 180 Influence of Monomer Geometry on Stereochemistry, 180 Effect of the Nature and Concentration of Coinitiator and Solvent on Stereochemistry, 181 Effect of Temperature on Stereochemistry, 184 The Penultimate Effect, 185 Stereoselective Polymerization of Racemic Monomer Mixture, 186 α -Methylstyrene, 187 Stereochemical Mechanism of Propagation, 188

- 4.3 The Chemistry of Chain Transfer, 192
 Introduction and Terminology, 192
 Chain Transfer Reactions, 194
 Chain Transfer by Counteranion, 194
 Chain Transfer by Unshared Electron Pair, 202
 Chain Transfer by π Electron Systems, 206
 Chain Transfer by Olefin, 206
 Chain Transfer by Aromatic Group, 209
 Chain Transfer by Hydride Transfer, 211
 Conclusions, 213
- 4.4 The Chemistry of Termination, 216
 Introduction, 216
 Termination Reactions, 218

Termination by Neutralization, 218
Neutralization by Reversal of Ionization
(Macroester Formation), 218

Neutralization with the Formation of Two Species, 220

Alkylations and Arylations of Growing Cation $(Z = Organic\ Group)$ \square Hydridation of Growing Cation (Z = H) \square Halogenation of Growing Cation (Z = Cl, Br)

Termination Involving Stable Cation Formation, 227 Quenching, 232

Conclusions, 233

References, 239

5 KINETICS OF CARBOCATIONIC POLYMERIZATION

255

- 5.1 Introduction, 256
- 5.2 Validity of the Steady State Assumption in Carbocationic Polymerizations, 257
- 5.3 Determination for Rates and Rate Constants, 262

Difficulties Relative to k_p Determination, 262

Kinetic Studies of Representative Systems, 265

Polymerization of α -Methylstyrene Coinitiated by n-BuOTiCl₃, 265

Polymerization of Isobutyl Vinyl Ether Initiated by Trityl Salts, 267

Determination of k_{trM} : Polymerization of p-Methoxystyrene Initiated by Trityl Salt, 269

Polymerization of Isobutyl Vinyl Ether Initiated by X-Rays, 270

5.4 The Effect of Solvent and Temperature on Rates, Rate Constants, and Activation Parameters, 273

Rates and Rate Constants, 273

Activation Parameters, 277

- 5.5 Rate Constant Ratios by Molecular Weight Determination, 282
- 5.6 The Effect of Temperature on Molecular Weight, 284

xvi □ CONTENTS

5.7 Molecular Weight Distributions, 289

5.8 Conclusions: Compilation and Analysis of Reliable Kinetic Data, 292

References, 301

6 COPOLYMERIZATION AND REACTIVITY

305

- 6.1 Introduction, 306
- 6.2 Definitions and Fundamentals, 306
- 6.3 Determination of Reactivity Ratios, 307

Differential Methods, 308

Integral Method, 309

Discussion of Reactivity Ratio Determination Methods. 309

The Kelen-Tüdős Method, 310

A Comprehensive Compilation of Reactivity Ratios, 312

- 6.4 Penultimate Effect, 332
- 6.5 Prediction of Ionic Copolymerization Reactivity Ratios, 334
- 6.6 Sequence Distribution Analysis, 336
- 6.7 Experimental Study of Reactivity, 338

Use of Rate Constants, 338

Use of Reactivity Ratios, 338

Reactivity by 13C-NMR, 339

6.8 Theoretical Study of Reactivity, 341

Methods and Their Evolution, 341

Huckel's Method. A Criticism, 341

Pople's Method, 342

Use of Calculations, 342

Reactivities of Vinyl Ethers and β -Substituted Vinyl Ethers. Comparison with Unsaturated Hydrocarbons, 345

Q, e Scheme in Cationic Polymerization, 347

	6.9 Effect of Experimental Conditions of Reactivity, 349						
		The Effect of Temperature, 349					
		The Effect of the Nature of Solvent, 357					
		The Effect of the Nature of Coinitiator and Counteranion, 362					
		The Effect of Additives, 366					
		Quantum Study of the Effects of Solvent and Coinitiator on Reactivity, 368					
		The Effect of Electric Field on Reactivity, 374					
	6.10	Influence of Structural Factors on Reactivity, 374					
		Influence of Electronic Factors, 374					
		Hammett's Postulate and Reactivity, 375					
		Influence of Steric Factors, 377					
	6.11	An Application of Reactivity Analysis: Azeotropic Copolymerization, 380					
	6.12	Molecular Weight Depression in Copolymerization, 381					
		References, 386					
7	STE	P-GROWTH POLYMERIZATION	395				
	7.1	Introduction, 396					
	7.2	Reaction Mechanism, 398					
		Substrate and Positional Selectivity, 399					
		Steric and Substituent Effects, 399					
	7.3	Polybenzyls, 401					
		References, 406	•				
8	SEQ	UENTIAL (BLOCK AND GRAFT) COPOLYMERS	409				
	8.1	Introduction, 410					
	8.2	A Note on Terminology, 410					

8.3	Block	Copoly	ymers,	412
-----	-------	--------	--------	-----

Synthesis of Block Copolymers, 412

A Summary of Block Copolymers, 419

8.4 Graft Copolymers, 422

Generalities, 422

Synthesis Principles and Graft Characteristics, 423

Bigraft Copolymers, 432

Surface Grafting, 434

An Efficient Grafting Onto: The Synthesis of

Poly(Butadiene-g-Styrene), 434

Graft Blocks, 436

Graft by Macromers, 437

Conclusions, 438

References, 440

9 MACROMOLECULAR ENGINEERING BY CARBOCATIONIC POLYMERIZATION

443

- 9.1 A Glance at the Past, 444
- 9.2 Elements of Cationic Macromolecular Engineering, 446

Controlled Initiation, 446

Propagation, 448

Control of Chain Transfer, 449

The Inifer Method, 449

Proton Traps, 452

Quasi-Living Polymerization, 453

Controlled Termination, 456

9.3 Combination of Elements and Summary, 458 References, 462

10 INDUSTRIAL PROCESSES, TECHNOLOGICAL ASPECTS

465

- 10.1 Introduction, 466
- 10.2 Isobutylene-Based Carbocationic Polymerizations, 467

Low Molecular Weight Polyisobutylenes, 468

Polybutenes, 469

Manufacture, 469

Molecular Weight Control of Polybutenes, 473

Structure, Properties, and Uses, 474

Polyisobutylenes, 475

Manufacture, 476

Structure, 478

Properties and Uses, 478

Medium and High Molecular Weight

Polyisobutylenes, 479

Manufacture, 479

Structure, Properties, and Uses, 480

Isobutylene Copolymers, Terpolymers, and

Derivatives, 481

Butyl Rubber, 481

Manufacture, 481

Structure, Properties, and Uses, 482

Liquid Butyl: Manufacture, Properties, and Uses, 484

Isobutylene-Isoprene-Divinylbenzene Terpolymers, 484

Halogenated Butyl Rubbers, 485

Miscellaneous Polyisobutylene Derivatives, 486

Carboxy-Terminated Polyisobutylene, 486

Hydroxy-Terminated Polyisobutylene, 486

Conjugated Diene Butyl, 487

S-Polymer, 487

Isobutylene-Cyclopentadiene Copolymers, 487

Butyl Latex, 488

10.3 Hydrocarbon Resins, 488

Petroleum Resins: Feeds, Manufacture, Varieties, 488

Properties and Uses, 490

Polyterpene Resins, 491

 β -Pinene Resins, 492

Dipentene Resins, 494

 α -Pinene Resins, 496

Resin Characteristics, 496

Production, 497

Applications, 498

β-Piene Resins, 498
Dipentene Resins, 498

α-Piene Resins, 498

Terpene-phenolic Resins, 498

- 10.4 Polybutadiene Oils, 499
- 10.5 Vinyl Ether-Based Industrial Polymerization Processes and Products, 499

References, 501

INDEX

505

010

Why Carbocationic Polymerization?

- 1.1 Advantages and Uses of Carbocationic Polymerization ☐ 2
- 1.2 Problems, Challenges, and the Future ☐ 5
 References ☐ 8

Why should one be interested in carbocationic polymerizations? Justification for the writing of this book lies in answering this question satisfactorily.

1.1 ADVANTAGES AND USES OF CARBOCATIONIC POLYMERIZATION

Cationic polymerization comprises an important body of techniques for the synthesis of a great variety of useful polymers; it provides a unique route to many high, medium, and low molecular weight materials with unique structures exhibiting a unique combination of properties; and last but not least it is a vigorously growing segment of polymer science which occupies many researchers, whose steady flow of discoveries bespeaks an intellectually challenging, indeed underexplored field and assures the long-range health of the discipline. A closer look at some of these points is rewarding.

Cationic polymerization is a useful branch of science that contributes greatly to the wealth, safety, and comfort of mankind. Many hundreds of people all over the world are gainfully employed by industries practicing cationic polymerizations, and if those who are involved in occupations only indirectly related to these industries, such as tire makers, who work with halobutyl rubber inner liners and compounders, who use pinene resins in pressure-sensitive tapes, are included, this number would probably be closer to many thousands.

Cationic polymerizations have two main roots in industry: technologies based on carbocationic polymerizations and those based on cationic heterocyclic ring-opening polymerizations. The latter fall outside the scope of this book, which focuses only on carbocationic or carbenium ion polymerization processes.

No doubt the largest carbocation-based polymerization industry by volume and monetary value to date is butyl rubber and halogenated (chlorinated and brominated) butyl rubber manufacture. Butyl rubber is a general-purpose elastomer obtained by copolymerizing isobutylene and a conjugated diene (isoprene); the halobutyls are specialty rubbers obtained by halogenating butyl rubber. These materials are used in a variety of applications in the tire, automotive, building, and construction industries.

Carbocation polymer industries of more modest scope include petroleum and indene-coumarone resin manufacture, polymerization of β -pinene, α -pinene, and mixed terpenes, and limited quantities of styrene and α -methylstyrene polymerization by acid initiators. In this class belong also "polybutenes" and "polyisobutenes" used, for example, as oils, viscosity index improvers, and additives, and low molecular weight (liquid) polybutadienes used in specialty coatings. Similarly, certain vinyl ethers are cationically polymerized and employed in adhesive formulations, pressure-sensitive tapes, blending agents, and additives.