JavaScnpt
The Good Parts

O’REILLY"® | YAHOO!, PRess
ZhK '\% tH hie it Douglas Crockford &

JavaScript: The Good Parts (& Enkg)
JavaScript: The Good Parts

Douglas Crockford

O’REILLY"

Beijing » Cambridge = Farnham < Koln + Sebastopol « Taipei + Tokyo

O'Reilly Media, Inc. # 4L & # X & B jk4L Bk

MR FREAFHMAE

BHEEm&mE (CIP) %iE

JavaScript: i B #54> = JavaScript:The Good Parts:
X/ (F) WP RAEEs (Crockford, D.) 3. —RZEIA .
PR ZREERF i, 2009.1

F4H 3 JavaScript:The Good Parts

ISBN 978-7-5641-1447-3

LoJe Wo5ge W Java | — BRI - %X
IV TP312

v i A A CIP B d% - (2008) 28 166986 5

{LH AR R ZEVERL & R
E%. 10-2008-346 =

©2008 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’'Reilly Media, Inc. and Southeast University Press,
2008. Authorized reprint of the original English edition, 2007 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

L& R g O'Reilly Media, Inc. # #& 2008,

F KPR E A ok A kAR R 2008, 2b R Ep RR 6T MR AN G R) R Ae 48 E AL P & —— O'Reilly
Media, {nc. ¢5# 77

BAFA . AR B EET . KBTI o & TE T X T4,

JavaScript:The Good Parts (EZE[IER)

W% AT R R

5 b PEEURERE 2 5 M4 . 210096
R AN I

i bk . htep://press.seu.edu.cn

it . press@seu.edu.cn

i ks tHH i ETRIA BR 2 5]

H A T8TE K x 980k 16 A

EN gk, 10.75 Ellgk

T . 181 7

i M 2009481 A58 IR

HI o k. 2009481 % 1 RENRY

5 5. ISBN 978-7-5641-1447-3/TP - 239
El % 1~3000

£ B 28.00 50 ()
AHESEHIRR SRR, HEESRERSTRA, B (FH). 02583792328

O'Reilly Media, Inc./\48

O'Reilly Media, Inc &5 F7F UNIX, X, Internet fil b F i AL B BB AE
SIS A T, [EIR R SE,

M Ei% 55 (The Whole Internet User's Guide & Catalog) (#2029 2v LB F1EiED
T BEEERNS0A S Z—) FIGNN (& FAY Internet [7] AT Lk B35), 5
WebSite (£ — £ HPCRIWeb IR & 255 {4), O'Reilly Media, Inc.—F 4b |- Internet
b8 3= 0B >4 TR AN

2 BEHRIEEY, OReilly Media, Inc. & &R ENITTEYLEBLRE — B~
AFE—IREFR. 5KLEITEYEBHRFEHE, O'Reilly Media, Inc. AHIEE
I EHLE L 5, X O'Reilly Media, Inc. JEAL T — /A% A5 R T H At AR i
(AR 7 4. O'Reilly Media, Inc 747 04t A GILART AR B B, s A I ek
HIH R L%, OReilly Media, Inc. 45 I £ [% I TE £ T —— fbdi 1 5 4R 3 400
BAIHARER. EWER, MAAERSENE, OReilly Media, Inc {REEM TR b
L E S, K4 O'Reilly Media, Inc. B% M S5THR VLI ZRFE ., ALl O'Reilly
Media, Inc. 58 173 F R EFEEH 4B,

th hig 15 AH

BEE AL AR R IZ A, ARIEAS A - AR X RIHN, 8
M AR TR RS N kAR L EDfEHARRERTERBRMW. A,
TR P AR S B35 R LR AR B B AR, b TR B R B RN B3 A 58— IR
TREEMNEFOBEAR, AREKFELRILTIEE O'Reilly Meida, Inc XML, 5
oL FIH AR AT AR R TG A RN EE, LU ENR 808 i th
R R R %A b, REHRBEIRESEIES “RP” HR, HFH R
HE” RALIRE.

BATH A R, Frol R B RGEx E AT BB R A R FHYLRIBTRE A R
A BT A B2 SR TAER B R B, M EIA R B AR R RA Br{Edt, th .0
EERHFEHWE LRI,

Bt AR MO SCENIR B 45, L4 -

e (JavaScript: The Good Parts) (EE[IER)

o (23] ActionScript 3.0 (EEIAR)

o (BEAERH C#) (RZEIRR)

o (AWM FIFRY (FEEIIR)

o (Ruby BFi&iHiEE) (ENAR)

o (EEREMIAY (REENMR)

o (%] ASP.NET 2.0 5 Ajax) (EEIER)

o (ASP.NET 3.5 ¥4 Web 2.0 [7P M E5) (FENAR)
e (Mac OS X: The Missing Manual, Leopard Editon) (£ E[IkR)
o (EEAMEU JavaScript) (FZENAR)

o (BEEFFRZEARDY (FEIR)

s {Intermediate Perl) (BZENER)

e (%] Python % =&Y (FZENAR)

o (ASP.NET AJAX HE) (BEIR)

Preface

If we offend, it is with our good will

That you should think, we come not to offend,

But with good will. To show our simple skill,

That is the true beginning of our end.

—William Shakespeare, A Midsummer Night’s Dream

This is a book about the JavaScript programming language. It is intended for pro-
grammers who, by happenstance or curiosity, are venturing into JavaScript for the first
time. It is also intended for programmers who have been working with JavaScript at a
novice level and are now ready for a more sophisticated relationship with the lan-
guage. JavaScript is a surprisingly powerful language. Its unconventionality presents
some challenges, but being a small language, it is easily mastered.

My goal here is to help you to learn to think in JavaScript. I will show you the com-
ponents of the language and start you on the process of discovering the ways those
components can be put together. This is not a reference book. It is not exhaustive
about the language and its quirks. It doesn’t contain everything you’ll ever need to
know. That stuff you can easily find online. Instead, this book just contains the
things that are really important.

This is not a book for beginners. Someday I hope to write a JavaScript: The First
Parts book, but this is not that book. This is not a book about Ajax or web program-
ming. The focus is exclusively on JavaScript, which is just one of the languages the
web developer must master.

This is not a book for dummies. This book is small, but it is dense. There is a lot of
material packed into it. Don’t be discouraged if it takes multiple readings to get it.
Your efforts will be rewarded.

xi

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, tilenames, and file extensions.

Constant width
Indicates computer coding in a broad sense. This includes commands, options,
variables, attributes, keys, requests, functions, methods, types, classes, modules,
properties, parameters, values, objects, events, event handlers, XML and
XHTML tags, macros, and keywords.

Constant width bold
Indicates commands or other text that should be typed literally by the user.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of exam-
ples from O'Reilly books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documenta-
tion does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “JavaScript: The Good Parts by Dou-
glas Crockford. Copyright 2008 Yahoo! Inc., 978-0-596-51774-8.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

. When you see a Safari® Books Online icon on the cover of your
Safa Il favorite technology book, that means the book is available online
Bosksontine through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

xi | Preface

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http:/fwww.oreilly.com/catalog/9780596517748/
To comment or ask technical questions about this book, send email ro:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http:/fwww.oreilly.com/

Acknowledgments

[want to thank the reviewers who pointed out my many egregious errors. There are
few things better in life than having really smart people point out your blunders. It is
even better when they do it before you go public. Thank you, Steve Souders, Bill
Scott, Julien Lecompte, Stoyan Stetanov, Eric Miraglia, and Elliotte Rusty Harold.

I want to thank the people I worked with at Electric Communities and State Soft-
ware who helped me discover that deep down there was goodness in this language,
especially Chip Morningstar, Randy Farmer, John La, Mark Miller, Scott Shattuck,
and Bill Edney.

I want to thank Yahoo! Inc. for giving me time to work on this project and for being
such a great place to work, and thanks to all members of the Ajax Strike Force, past
and present. [also want to thank O’Reilly Media, Inc., particularly Mary Treseler,
Simon St.Laurent, and Sumita Mukherji for making things go so smoothly.

Special thanks to Professor Lisa Drake for all those things she does. And I want to
thank the guys in ECMA TC39 who are struggling to make ECMAScript a better
language.

Finally, thanks to Brendan Eich, the world’s most misunderstood programming lan-
guage designer, without whom this book would not have been necessary.

Preface | xiii

About the Author

Douglas Crockford is a senior JavaScript architect at Yahoo! who is well known for
discovering and popularizing the JSON (JavaScript Object Notation) format. He is
the world’s foremost living authority on JavaScript. He speaks regularly at confer-
ences about advanced web technology, and he also serves on the ECMAScript
committee.

Colophon

The animal on the cover of JavaScript: The Good Parts is a Plain Tiger butterfly
(Danaus chrysippus). Outside of Asia, the insect is also known as the African
Monarch. It is a medium-size butterfly characterized by bright orange wings with six
black spots and alternating black-and-white stripes.

Its striking looks have been noted for millennia by scientists and artists. The writer
Vladimir Nabokov—who was also a noted lepidopterist—had admiring words for
the buttertly in an otherwise scathing New York Times book review of Alice Ford’s
Audubon’s Butterflies, Moths, and Other Studies (The Studio Publications). In the
book, Ford labels drawings made previous to and during Audubon’s rime in the 19th
century as “scientifi-cally [sic] unsophisticated.”

In response to Ford, Nabokov writes, “The unsophistication is all her own. She
might have looked up John Abbot’s prodigious representations of North American
lepidoptera, 1797, or the splendid plates of 18th- and early-19th-century German
lepidoprterists. She might have traveled back some 33 centuries to the times of Tuth-
mosis IV or Amenophis II1 and, instead of the obvious scarab, found there frescoes
with a marvelous Egyptian butterfly (subtly combining the pattern of our Painted
Lady and the body of an African ally of the Monarch).”

While the Plain Tiger’s beauty is part of its charm, its looks can also be deadly.
During its larval stages, the butterfly ingests alkaloids that are poisonous to birds—
its main predator—which are often attracted to the insect’s markings. After ingesting
the Plain Tiger, a bird will vomit repeatedly—occasionally fatally. If the bird lives, it
will let other birds know to avoid the insect, which can also be recognized by its
leisurely, meandering pattern of flying low to the earth.

The cover image is from Dover’s Animals. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and
the code font is LucasFont’s TheSans Mono Condensed.

Preface

1.

GoodParts

Why JavaScript?
Analyzing JavaScript
A Simple Testing Ground

Grammar

Whitespace
Names
Numbers
Strings
Statements
Expressions
Literals
Functions

Objects

Object Literals
Retrieval

Update

Reference
Prototype
Reflection
Enumeration
Delete

Global Abatement

Table of Contents

o~ N L

10
15
17
19

20
21
22
22
22
23
24
24
25

vii

4,

Functions

Function Objects
Function Literal
Invocation
Arguments
Return
Exceptions

Augmenting Types

Recursion
Scope
Closure
Callbacks
Module
Cascade
Curry
Memoization

Inheritance

Pseudoclassical
Object Specifiers
Prototypal
Functional

Parts

Arrays

Array Literals
Length
Delete
Enumeration
Confusion
Methods
Dimensions

Regular Expressions

An Example
Construction
Elements

viii

I

Table of Contents

26
27
27
31
31
32
32
34
36
37
40
40
42
43
44

47
50
50
52
55

58
59
60
60
61
62
63

66
70
72

9. Style 94
10. Beautiful Features 98
Appendix A. AwfulParts 101
Appendix B. BadParts 109
Appendix C. JSLint 115
Appendix D. SyntaxDiagrams 125
Appendix E. JSON 136
Index ... 147

-—
Table of Contents | ix

CHAPTER 1
Good Parts

...setting the attractions of my
good parts aside I have no other charms.
—William Shakespeare, The Merry Wives of Windsor

When I was a young journeyman programmer, I would learn about every feature of
the languages 1 was using, and I would attempt to use all of those features when I
wrote. I suppose it was a way of showing off, and I suppose it worked because I was
the guy you went to if you wanted to know how to use a particular feature.

Eventually I figured out that some of those features were more trouble than they
were worth. Some of them were poorly specified, and so were more likely to cause
portability problems. Some resulted in code that was difficult to read or modify. Some
induced me to write in a manner that was too tricky and error-prone. And some of
those features were design errors. Sometimes language designers make mistakes.

Most programming languages contain good parts and bad parts. I discovered that I
could be a better programmer by using only the good parts and avoiding the bad
parts. After all, how can you build something good out of bad parts?

It is rarely possible for standards committees to remove imperfections from a lan-
guage because doing so would cause the breakage of all of the bad programs that
depend on those bad parts. They are usually powerless to do anything except heap
more features on top of the existing pile of imperfections. And the new features do
not always interact harmoniously, thus producing more bad parts.

But you have the power to define your own subset. You can write better programs by
relying exclusively on the good parts.

JavaScript is a language with more than its share of bad parts. It went from non-
existence to global adoption in an alarmingly short period of time. It never had an
interval in the lab when it could be tried out and polished. It went straight into
Netscape Navigator 2 just as it was, and it was very rough. When Java™ applets
failed, JavaScript became the “Language of the Web” by default. JavaScript’s popu-
larity is almost completely independent of its qualities as a programming language.

Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a
beautiful, elegant, highly expressive language that is buried under a steaming pile of
good intentions and blunders. The best nature of JavaScript is so effectively hidden
that for many years the prevailing opinion of JavaScript was that it was an unsightly,
incompetent toy. My intention here is to expose the goodness in JavaScript, an out-
standing, dynamic programming language. JavaScript is a block of marble, and I chip
away the features that are not beautiful until the language’s true nature reveals itself.
I believe that the elegant subset 1 carved out is vastly superior to the language as a
whole, being more reliable, readable, and maintainable.

This book will not attempt to fully describe the language. Instead, it will focus on the
good parts with occasional warnings to avoid the bad. The subset that will be
described here can be used to construct reliable, readable programs small and large.
By focusing on just the good parts, we can reduce learning time, increase robustness,
and save some trees.

Perhaps the greatest benefit of studying the good parts is that you can avoid the need
to unlearn the bad parts. Unlearning bad patterns is very difficult. It is a painful task
that most of us face with extreme reluctance. Sometimes languages are subsetted to
make them work better for students. But in this case, I am subsetting JavaScript to
make it work better for protessionals.

Why JavaScript?

JavaScript is an important language because it is the language of the web browser. lts
association with the browser makes it one of the most popular programming lan-
guages in the world. At the same time, it is one of the most despised programming
languages in the world. The APl of the browser, the Document Object Model
(DOM) is quite awful, and JavaScript is unfairly blamed. The DOM would be pain-
ful to work with in any language. The DOM is poorly specified and inconsistently
implemented. This book touches only very lightly on the DOM. I think writing a
Good Parts book about the DOM would be extremely challenging.

JavaScript is most despised because it isn’t soMe OTHER LANGUAGE. If you are good in
SOME OTHER LANGUAGE and you have to program in an environment that only supports
JavaScript, then you are forced to use JavaScript, and that is annoying. Most people
in that situation don’t even bother to learn JavaScript first, and then they are sur-
prised when JavaScript turns out to have significant differences from the some otHer
Lancuack they would rather be using, and that those differences matter.

The amazing thing about JavaScript is that it is possible to get work done with it
without knowing much about the language, or even knowing much about program-
ming. It is a language with enormous expressive power. It is even better when you
know what you’re doing. Programming is difficult business. It should never be
undertaken in ignorance.

2 | Chapter1: Good Parts

Analyzing JavaScript

JavaScript is built on some very good ideas and a few very bad ones.

The very good ideas include functions, loose typing, dynamic objects, and an expres-
sive object literal notation. The bad ideas include a programming model based on
global variables.

JavaScript’s functions are first class objects with (mostly) lexical scoping. JavaScript
is the first lambda language to go mainstream. Deep down, JavaScript has more in
common with Lisp and Scheme than with Java. It is Lisp in C’s clothing. This makes
JavaScript a remarkably powerful language.

The fashion in most programming languages today demands strong typing. The the-
ory is that strong typing allows a compiler to detect a large class of errors at compile
time. The sooner we can detect and repair errors, the less they cost us. JavaScript is a
loosely typed language, so JavaScript compilers are unable to detect type errors. This
can be alarming to people who are coming to JavaScript from strongly typed lan-
guages. But it turns out that strong typing does not eliminate the need for careful
testing. And [have found in my work that the sorts of errors that strong type check-
ing finds are not the errors [worry about. On the other hand, I find loose typing to
be liberating. T don’t need to form complex class hierarchies. And 1 never have to cast
or wrestle with the type system to get the behavior that I want.

JavaScript has a very powerful object literal notation. Objects can be created simply
by listing their components. This notation was the inspiration for JSON, the popu-
lar data interchange format. (There will be more about JSON in Appendix E.)

A controversial feature in JavaScript is prototypal inheritance. JavaScript has a class-
free object system in which objects inherit properties directly from other objects. This
is really powerful, but it is untamiliar to classically trained programmers. If you attempt
to apply classical design patterns directly to JavaScript, you will be frustrated. Burt if
you learn to work with JavaScript's prototypal nature, your efforts will be rewarded.

JavaScript is much maligned for its choice of key ideas. For the most part, though,
those choices were good, if unusual. But there was one choice that was particularly
bad: JavaScript depends on global variables for linkage. All of the top-level variables
of all compilation units are tossed together in a common namespace called the global
object. This is a bad.thing because global variables are evil, and in JavaScript they are
fundamental. Fortunately, as we will see, JavaScript also gives us the tools to miti-
gate this problem.

In a few cases, we can’t ignore the bad parts. There are some unavoidable awful
parts, which will be called out as they occur. They will also be summarized in
Appendix A. But we will succeed in avoiding most of the bad parts in this book,
summarizing much of what was left out in Appendix B. If you want to learn more
about the bad parts and how to use them badly, consult any other JavaScript book.

Analyzing JavaScript | 3

The standard that defines JavaScript (aka JScript) is the third edition of The
ECMAScript Programming Language, which is available from http://www.ecma-
international.org/publications/files/fecma-st/ECMA-262.pdf. The language described in
this book is a proper subset of ECMAScript. This book does not describe the whole
language because it leaves out the bad parts. The treatment here is not exhaustive. It
avoids the edge cases. You should, too. There is danger and misery at the edges.

Appendix C describes a programming tool called JSLint, a JavaScript parser that can
analyze a JavaScript program and report on the bad parts that it contains. JSLint pro-
vides a degree of rigor that is generally lacking in JavaScript development. It can give
you confidence that your programs contain only the good parts.

JavaScript is a language of many contrasts. It contains many errors and sharp edges,
so you might wonder, “Why should I use JavaScript?” There are two answers. The
first is that you don’t have a choice. The Web has become an important platform for
application development, and JavaScript is the only language that is found in all
browsers. It is unfortunate that Java failed in that environment; if it hadn’t, there
could be a choice for people desiring a strongly typed classical language. But Java did
fail and JavaScript is flourishing, so there is evidence that JavaScript did something
right.

The other answer is that, despite its deficiencies, JavaScript is really good. It is light-
weight and expressive. And once you get the hang of it, functional programming is a
lot of fun.

But in order to use the language well, you must be well informed about its limita-
tions. I will pound on those with some brutality. Don’t let that discourage you. The
good parts are good enough to compensate for the bad parts.

A Simple Testing Ground

If you have a web browser and any text editor, you have everything you need to run
JavaScript programs. First, make an HTML file with a name like program.html:

<html><body><pre><script src="program.js">
</script></pre></body></html>

Then, make a file in the same directory with a name like program.js:
document.writeln('Hello, world!');

Next, open your HTML file in your browser to see the result. Throughout the book,
a method method is used to define new methods. This is its definition:

Function.prototype.method = function (name, func) {
this.prototype[name] = func;
return this;

1
[t will be explained in Chapter 4.

4 | Chapter1: Good Parts

CHAPTER 2
Grammar

I know it well:
I read it in the grammar long ago.
—William Shakespeare, The Tragedy of Titus Andronicus

This chapter introduces the grammar of the good parts of JavaScript, presenting a
quick overview of how the language is structured. We will represent the grammar
with railroad diagrams.

The rules for interpreting these diagrams are simple:

* You start on the left edge and follow the tracks to the right edge.

* As you go, you will encounter literals in ovals, and rules or descriptions in
rectangles.

* Any sequence that can be made by following the tracks is legal.
* Any sequence that cannot be made by following the tracks is not legal.

* Railroad diagrams with one bar at each end allow whitespace to be inserted
between any pair of tokens. Railroad diagrams with two bars at each end do not.

The grammar of the good parts presented in this chapter is significantly simpler than
the grammar of the whole language.

Whitespace

Whitespace can take the form of formatting characters or comments. Whitespace is
usually insignificant, but it is occasionally necessary to use whitespace to separate
sequences of characters that would otherwise be combined into a single token. For
example, in:

var that = this;

the space between var and that cannot be removed, but the other spaces can be
removed.

