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Preface

This book, which began as a seminar in 1985 at MIT, contains complete proofs of the
local index theorem for Dirac operators using the heat kernel approach, together with
its generalizations to equivariant Dirac operators and families of Dirac operators, as
well as background material on superconnections and equivariant differential forms.

Since the publication of the first edition, the subjects treated here have contin-
ued to find new applications. Equivariant cohomology plays an important role in the
study of symplectic reduction, and Bismut superconnections and the local index the-
orem for families have had many applications, through the construction of higher
analytic torsion forms and currents. (For a survey of some of these developments,
we recommend reading Bismut’s talk at the Berlin International Congress of Mathe-
maticians, reference [33].)

Although this book lacks some of the usual attributes of a textbook (such as
exercises), it has been widely used in advanced courses in differential geometry;
for many of the topics discussed here, there are no other treatments available in
monograph form. Because of the continuing demand from students for the book,
we were very pleased when our editor Catriona Byrne at Springer Verlag proposed
reissuing it in the series “Grundiehren Text Editions.” The proofs in this book remain
among the simplest available, and we have decided to retain them without any change
in the new edition.

We have not attempted to give a definitive bibliography of this very large subject,
but have only tried to draw attention to the articles that have influenced us.

We would like to take the opportunity to thank the other participants in the MIT
seminar, especially Martin Andler and Varghese Mathai, for their spirited participa-
tion. Discussions with many other people have been important to us, among whom
we would like to single out Jean-Michel Bismut, Dan Freed and Dan Quillen. Finally,
we are pleased to be able to thank all of those people who read all or part of the book
as it developed and who made many comments which were crucial in improving the
book, both mathematically and stylistically, especially Jean-Frangois Burnol, Michel
Duflo, Sylvie Paycha, Christophe Soulé, and Shlomo Sternberg. We also thank the
referee for suggestions which have improved the exposition.



Vi Preface

To all of the following institutes and funds, we would like to express our grati-
tude: the Centre for Mathematical Analysis of the ANU, the ENS-Paris, the Harvard
Society of Fellows, the IHES, MIT, and the Université de Paris-Sud. We also received
some assistance from the CNRS, the NSF, and the Sloan Foundation.

We wish to thank readers of the first edition who were kind enough to send us
corrections: any rematning errors are of course our own.

Paris and Chicago, N. Berline,
September, 2003 E. Getzler,
M. Vergne
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Introduction

Dirac operators on Riemannian manifolds, which were introduced in the articles of
Atiyah and Singer [13] and Lichnerowicz [81], are of fundamental importance in diff-
erential geometry: they occur in situations such as Hodge theory, gauge theory, and
geometric quantization, to name just a few examples. Most first-order linear differ-
ential operators of geometric origin are Dirac operators.

After Atiyah and Singer’s fundamental work on the index for general elliptic op-
erators, methods based on the heat kernel were applied to prove the Atiyah-Singer
Index Theorem in the special case of Dirac operators, by Patodi [90], Gilkey [65] and
Atiyah-Bott-Patodi [8]. In recent years, new insights into the local index theorem of
Patodi and Gilkey have emerged, which have simplified the proofs of their results,
and permitted the extension of the local index theorem to other situations. Thus, we
felt it worthwhile to write a book in which the Atiyah-Singer Index Theorem for
Dirac operators on compact Riemannian manifolds and its more recent generaliza-
tions would receive elementary proofs. Many of the theorems which we discuss are
due to J.-M. Bismut, although we have replaced his use of probability theory by
classical asymptotic expansion methods.

Our book is based on a simple principle, which we learned from D. Quillen: Dirac
operators are a quantization of the theory of connections, and the supertrace of the
heat kernel of the square of a Dirac operator is the quantization of the Chern character
of the corresponding connection. From this point of view, the index theorem for
Dirac operators is a statement about the relationship between the heat kernel of the
square of a Dirac operator and the Chern character of the associated connection. This
relationship holds at the level of differential forms and not just in cohomology, and
leads us to think of index theory and heat kernels as a quantization of Chern-Weil
theory.

Following the approach suggested by Atiyah-Bott and McKean-Singer, and pur-
sued by Patodi and Gilkey, the main technique used in the book is an explicit geomet-
ric construction of the kernel of the heat operator ¢* D? associated to the square of
a Dirac operator D. The importance of the heat kernel is that it interpolates between
the identity operator, when ¢ = 0, and the projection onto the kernel of the Dirac op-



erator D, when t = «. However, we will study the heat kernel, and more particularly
its restriction to the diagonal, in its own right, and not only as a tool in understanding
the kernel of D.

Lastly, we attempt to express all of our constructions in such a way that they
generalize easily to the equivariant setting, in which a compact Lie group G acts on
the manifold and leaves the Dirac operator invariant. *

We will consider the most general type of Dirac operators, associated to a Chif-
ford module over a manifold, to avoid restricting ourselves to manifolds with spin
structures. We will also work within Quillen’s theory of superconnections, since this
is conceptually simple, and is needed for the formulation of the local family index
theorem of Bismut in Chapters 9 and 10.

We will now give a rapid account of some of the main results discussed in our
book. Dirac operators on a compact Riemannian manifold M are closely related to
the Clifford algebra bundle. The Clifford algebra C,(M) at the point x € M is the
associative complex algebra generated by cotangent vectors & € T,"M with relations

-0+ 0y = —Z(al,az),

where (a, &) is the Riemannian metric on ;M. If ¢; is an orthonormal basis of T,M
with dual basis ¢, then this amounts to saying that C,(M) is generated by elements
¢! subject to the relations

(c)? = —1,and ¢'c/ + ¢/’ = O fori # j.

The Clifford algebra C,(M) is a deformation of the exterior algebra AT,"M, and there
is a canonical bijection O : C,(M) — ATM, the symbol map, defined by the formula

ox(ct...diy=€VA... A€

The inverse of this map is denoted by ¢ : ATM — C;(M).

Let & be a complex Z,-graded bundle on M, that is, & = & ® & ~. We say that
& is a bundle of Clifford modules, or just a Clifford module, if there is a bundle map
¢ : T*M — End(&) such that

1. C(al)c(az) +c(a2)c(a1) = ——2(&1,0!2), and
2. c(ct) swaps the bundles &+ and £~

That is, & is a Z,-graded module for the algebra C;(M). If M is even-dimensional,
the Clifford algebra Cx(M) is simple, and we obtain the decomposition

From now on, most of our considerations only apply to even-dimensional ori-
ented manifolds. If M is a spin manifold, that is, a Riemannian manifold satisfy-
ing a certain topological condition, there is a Clifford module ., known as the
spinor bundle, such that End(.#) = C(M). On such a manifold, any Clifford module
may be written as a twisted spinor bundle # ® &, with #" = Homc(y (#,&). Let
Iy € I'(M,C(M)) be the chirality operator in C(M), given by the formula
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_ dim(M)/2. 1 n
Ly = @mD2c1 o,

so that I} = 1.

If & is a vector bundle on M, let I'(M, &) be the space of smooth sections of &,
and let #(M, &) = I'(M,AT*M @ &) be the space of differential forms on M with
values in €. We make the obvious, but crucial, remark that if & is a Clifford module,
then by the symbol map, the space of sections

I'(M,End(&)) = I'(M,C(M) ®Endc(y)(£))
is isomorphic to the space of bundie-valued differential forms
& (M, Endc(6)) =T (M,AT"M ®@Endc(y)(€))-

Thus, a section k € I"'(M,End(&’)) corresponds to a differential form o (k) with val-
ues in Endga)(£). If M is a spin manifold and & = #' ® 7 is a twisted spinor
bundle, o(k) is a differential form with values in End(%#).

A Clifford connection on a Clifford module & is a connection V¢ on & satisfying

the formula
[Vf,c(a)] =c(Vxa),

where o is a one-form on M, X is a vector field, and Vo is the Levi-Civita derivative
of a.

The Dirac operator D associated to the Clifford connection V¢ is the composition
of arrows

&
I'(M,&) 5 T(M,T"MQE) S T'(M,&).

With respect to a local frame e' of T*M, D may be written

D :Zc"Vf:A

A number of classical first-order elliptic differential operators are Dirac operators
associated to a Clifford connection. Let us list three examples:

1. The exterior bundle AT*M is a Clifford bundle with Clifford action by the one-
fom o € I'(M,T*M) defined by the formula

cla)=¢(a) —gla)s;

here £(a) : ['(M,A*T*M) — I'(M,A*"1T*M) is the operation of exterior mul-
tiplication by a. The Levi-Civita connection on AT*M is a Clifford connection.
The associated Dirac operator is d +d*, where d is the exterior differential oper-
ator. The kernel of this operator is just the space of harmonic forms on M, which
by Hodge’s Theorem is isomorphic to the de Rham cohomology H®*(M) of M.

2. If M is a complex manifold and # is a Hermitian bundle over M, the bun-
dle A(T®'M)* ® # is a Clifford module, with & = o0+ a0,1 € &O(M) @
2/%1(M) acting by



c(er) = v2(e(aw,) — e(@p)").

The Levi-Civita connection on AT*M preserves A(T%!M)* and defines a Clif-
ford connection if M is Kahler, and the Dirac operator associated to this con-
nection is v/2(d + 9*). If # is a holomorphic vector bundle with its canoni-
cal connection, the tensor product of this connection with the Levi-Civita con-
nection on A(T%!M)* is a Clifford connection with associated Dirac operator
v2(9 + 8*). The kernel of this operator is the space of harmonic forms on M
lying in &#%*(M,#'), which by Dolbeault’s theorem is isomorphic to the sheaf
cohomology H® (M, #').

. If M is a spin manifold, its spinor bundle . is a Clifford module, the Levi-Civita

connection is a Clifford connection, and the associated Dirac operator is known
simply as the Dirac operator. Its kernel is the space of harmonic spinors.

Thus, we see from these examples that the kernel of a Dirac operator often has a
topological, or at least geometric, significance.

The heat kernel (x | e~ D? | y) € Hom(&}, &%) of the square of the Dirac operator

D is the kernel of the heat semigroup ' 02, that is,

(eP5)(x) = /M (x] €™ | y)s(y)|dy| forall s [(M,&),

where |dy| is the Riemannian measure on M. The following properties of the heat
kernel are proved in Chapter 2:

1.
2.

3.

it is smooth;

the fact that smooth kernels are trace-class, from which we see that the kernel of
D is finite-dimensional;

the uniform convergence of (x | et0? | ¥) to the kernel of the projection onto
ker(D) as t — oo;

. . . 2
. the existence of an asymptotic expansion for (x i el | y) at small ¢, (where

dim(M) = n =2§),
(x| €4 | y) ~ ()t P14 S fi (),
i=0

where f; is a sequence of smooth kernels for the bundle & given by local func-
tions of the curvature of V¢ and the Riemannian curvature of M, and d(x,y) is
the geodesic distance between x and y.

Note that the restriction to the diagonal x — (x | e™* 0? | x) is a section of End(&).

The central object of our study will be the behaviour at small time of the differential
form

0((‘! et |x}) € & (M,Endcy) (£)),

obtained by taking the image under the symbol map o of {x | ¢’ p? [x).



Let us describe the differential forms which enter in the study of the asymptotic
expansion of (x | e~ p? | x). If g is a unimodular Lie algebra, let j; (X) be the analytic
function on g defined by the formula

[}

Jolx) = det (2L

it is the Jacobian of the exponential map exp : g — G. We define jé/ 2ina neighbour-

hood of 0 € g to be the square-root of jg such that j:,/ 2(O) =1.

Let R € &/%(M,s0(TM)) be the Riemannian curvature of M. Choose a local or-
thonormal frame e; of TM, and consider the matrix R with two-form coefficients,

Rij = (Rei,e;) € (M.
Then (M) is a matrix with even degree differential form coefficients, and since

R/2
the determinant is invariant under conjugation by invertible matrices,

J(R) = det ( ——~—Si“}F‘<( /R;/ 2) )

is an element of & (M) independent of the frame of TM used in its definition. Note
that the zero-form component of j(R) equals 1. Thus, we can define the A-genus
A(M) of the manifold M by

AM) = j(R™12 = detl/z(gm—TR(—/I%) € o (M),

it is a closed differential form whose cohomology class is independent of the metric
on M. It is a fascinating puzzle that the function jj 172 occurs in a basic formula of
representation theory for Lie groups, the Kirillov character formula, while its cousin,
the A-genus, plays a similar role in a basic formula of differentiai geometry, the
index theorem for Dirac operators. Understanding the relationship between these
two objects is one of the aims of this book.

Note that our normalization of the A-genus, and of other characteristic classes, is
not the same as that preferred by topologists, who multiply the 2k-degree component
by (~2mi), so that it lies in H* (M, Q). We prefer to leave out these powers of —27i,
since it is in this form that they will arise in the proof of the local index theorem.

Let & be a Clifford module on M, with Clifford connection & and curvature F¢.
The twisting curvature F¥/5 of £ is defined by the formula

FE/S — € _R¢ ¢ WZ(M,EndC(M)(‘g)))’

where

Rg(e,-,ej) = % Z(R(e,-,ej)ek,e[)c‘kcl.
k<l

If M is a spin manifold with spinor bundle . and & = # ®.%, F&/S is the curvature
of the bundle #.



Fora € I'(M,C(M)) = I"(M,AT*M), we denote the k-form component of o (a)
by G, (a)

The first four chapters lead up to the proof of the following theorem, which calcu-
lates the leading order term, in a certain sense, of the heat kernel of a Dirac operator
restricted to the diagonal.

: . . D2 :
Theorem A. Consider the asymptotic expansion of (x | e | x) at small times t,

(x ‘ e’ [ x) ~ (4mt)~¢ itik,-(x)

i=0
with coefficients k; € I'(M,C(M) @ End¢uy)(€))). Then

1. oj(ki)=0for j>2i
2. Let o(k) = 3£ o 62(ki) € & (M,Endc()(&)). Then

R/2
K =d 1/2f ™<= _p€/S .
o (k) = det (sinh(R/Z) ) exp(—F"7)

In Chapter 4, we give a proof of Theorem A which relies on an approximation
of D? by a harmonic oscillator, which is easily derived from Lichnerowicz’s formula
for the square of the Dirac operator, and properties of the normal coordinate system.

Since the zero-form piece of the A-genus equals 1, we recover Weyl’s formula

lim(4r)" (x| e | x) = k(&);

in this sense, Theorem A is a refinement of Weyl’s formula for the square of a Dirac
operator.
Define the index of D to be the integer

ind(D) = dim(ker(D™)) — dim(ker(D ™)),

where D is the restriction of D to I'(M, &%). For example, ind(d + d*) is the Euler

characteristic n

Eul(M) = Y (—1)' dim(H'(M))
i=0
of the manifold M, while ind(d + 9*) is the Euler characteristic of the sheaf of holo-
morphic sections

Eul(M,#) = ﬁ(-l)"dim(ﬂ"(M,W)).
i=0

These indexes are particular cases of the Atiyah-Singer Index Theorem, and are
given by well-known formulas, respectively the Gauss-Bonnet-Chern theorem and
the Riemann-Roch-Hirzebruch theorem; we will show in Section 4.1 how these for-
mulas follow from Theorem A.



