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Preface

This book offers a graduate-level exposition of selected topics in modern approxima-
tion theory. A large portion of the book focuses on multivariate approximation theory,
where much recent research is concentrated. Although our own interests have influenced
the choice of topics, the text cuts a wide swath through modern approximation theory, as
can be seen from the table of contents. We believe the book will be found suitable as a
text for courses, seminars, and even solo study. Although the book is at the graduate
level, it does not presuppose that the reader already has taken a course in approximation
theory.

Topics of This Book

A central theme of the book is the problem of interpolating data by smooth multivariable
functions. Several chapters investigate interesting families of functions that can be
employed in this task; among them are the polynomials, the positive definite functions,
and the radial basis functions. Whether these same families can be used, in general, for
approximating functions to arbitrary precision is a natural question that follows; it is
addressed in further chapters.

The book then moves on to the consideration of methods for concocting approxi-
mations, such as by convolutions, by neural nets, or by interpolation at more and more
points. Here there are questions of limiting behavior of sequences of operators, just as
there are questions about interpolating on larger and larger sets of nodes.

A major departure from our theme of multivariate approximation is found in the
two chapters on univariate wavelets, which comprise a significant fraction of the book.
In our opinion wavelet theory is so important a development in recent times—and is so
mathematically appealing—that we had to devote some space to expounding its basic
principles.

The Style of This Book

In style, we have tried to make the exposition as simple and clear as possible, electing
to furnish proofs that are complete and relatively easy to read without the reader needing
to resort to pencil and paper. Any reader who finds this style too prolix can proceed
quickly over arguments and calculations that are routine. To paraphrase Shaw: We have
done our best to avoid conciseness! We have also made considerable efforts to find sim-
ple ways to introduce and explain each topic. We hope that in doing so, we encourage
readers to delve deeper into some areas. It should be borne in mind that further explo-
ration of some topics may require more mathematical sophistication than is demanded
by our treatment.
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Organization of the Book

A word about the general plan of the book: we start with relatively elementary matters
in a series of about ten short chapters that do not, in general, require more of the reader
than undergraduate mathematics (in the American university system). From that point
on, the gradient gradually increases and the text becomes more demanding, although
still largely self-contained. Perhaps the most significant demands made on the technical
knowledge of the reader fall in the areas of measure theory and the Fourier transform.
We have freely made use of the Lebesgue function spaces, which bring into play such
measure-theoretic results as the Fubini Theorem. Other results such as the Riesz Repre-
sentation Theorem for bounded linear functionals on a space of continuous functions
and the Plancherel Theorem for Fourier transforms also are employed without com-.
punction; but we have been careful to indicate explicitly how these ideas come into play.
Consequently, the reader can simply accept the claims about such matters as they arise.
Since these theorems form a vital part of the equipment of any applied analyst, we are
confident that readers will want to understand for themselves the essentials of these
areas of mathematics. We recommend Rudin’s Real and Complex Analysis (McGraw-
Hill, 1974) as a suitable source for acquiring the necessary measure theoretic ideas, and
the book Functional Analysis (McGraw-Hill, 1973) by the same author as a good intro-
duction to the circle of ideas connected with the Fourier transform.

Additional Reading

We call the reader’s attention to the list of books on approximation theory that immedi-
ately precedes the main section of references in the bibliography. These books, in gen-
eral, are concerned with what we may term the “classical” portion of approximation
theory—understood to mean the parts of the subject that already were in place when the
authors were students. As there are very few textbooks covering recent theory, our book
should help to fill that “much needed gap,” as some wag phrased it years ago. This list of
books emphasizes only the systematic textbooks for the subject as a whole, not the spe-
cialized texts and monographs.
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1

Introductory Discussion
of Interpolation

We shall be concerned with real-valued functions defined on a domain X, which need not
be specified at this moment. (It will often be a subset of R, RR?, ..., but can be more gen-
eral.) In the domain X a set of »n distinct points is given:

N={x,, x,, ...,xn}

These points are called nodes, and N is the node set. For each node x; an ordinate
; € Ris given. (Each 4, is a real number.) The problem of interpolation is to find a suit-
able function F : X — R that takes these prescribed n values. That is, we want

F(x)=4; (l=<i=n)

When this occurs, we say that F interpolates the given data {(x;, 4)}7_,. Usually F
must be chosen from a preassigned family of functions on X.

-A wide variety of functions F may be suitable. Figures 1.1 and 1.2 show 12 dif-
ferent interpolation functions for a single data set. The nodes are 5 real numbers. They
and the specified ordinates are given in this table:

x|12]36] 43|61 78
yl12]311-13]27] 14

In Figure 1.1a, the raw data points are shown. In Figures 1.1b to 1.1f, F has the form
F(x)= Zf cju(x — x;), in which u is a function of our choosing. First we took a B-spline
of degree 0. To avoid the discontinuous nature of this example, we then took u to be a
B-spline of degree 1, as shown in Figure 1.1c. To avoid discontinuities in the first two
derivatives, we then let u be a cubic B-spline, as in Figure 1.1d. In Figure 1.1e we show
the interpolant when #(x) = |x|, and in Figure 1.1f we used u(x) = |x[1/2,
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Further examples are shown in Figure 1.2. Here we have used the same data as in
Figure 1.1, but a different choice of interpolating functions. Specifically, 1.2a employs a
fourth-degree polynomial; 1.2b employs a natural cubic spline; 1.2¢ is given by the
Interpolation command in Mathematica and is also a cubic spline. In 1.2d, we used a
cubic B-spline, B3, determined by integer knots, and interpolated with Zf ciB"’ (x —x)).
In 1.2¢, we used 3 c;e~* %, and in 1.2f we used, in the same manner, a 0-degree
B-spline. Some variations in scaling are noticeable in the figures.

The examples in Figures 1.1 and 1.2 suggest the great diversity among different
types of interpolating functions. The selection of an appropriate type of interpolant must
be made according to further criteria, above and beyond the basic requirement of inter-
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polation. For example, in a specific application we may want the interpolating function
to have a continuous first derivative. (That requirement would disqualify most of the
functions in Figure 1.1.)

The linear interpolation problem is a special case that arises when F is to be cho-
sen from a prescribed n-dimensional vector space of functions on X. Suppose that U is
this vector space and that a basis for U is {“1’ Uy, .., un}. The function F that we seek
must have the form

F= i CjU;
j=1
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When the interpolation conditions are imposed on F, we obtain
n
A=Fx)= Z cju;(x) (=i=n)
Jj=1

This is a system of n linear equations in # unknowns. It can be written in matrix
form as Ac = y, or in detail as

up(xp))  up(xy) o uu(xy) c Al
uy(xz)  uplxz) o uu(xo) 2 f_| A
uy (.X,,) us (xn) ot u, (xn) Cp ;'n

The n X n matrix A appearing here is called the interpolation matrix. In order that our
problem be solvable for any choice of ordinates 4, it is necessary and sufficient that the
interpolation matrix be nonsingular. The ideal situation is that this matrix be nonsingu-
lar for all choices of n distinct nodes.

THEOREM 1. Let U be an n-dimensional linear space of functions on X.
Let x|, x,, ..., x, be n distinct nodes in X. In order that U be capable of
interpolating arbitrary data at the nodes it is necessary and sufficient that
zero data be interpolated only by the zero-element in U.

Proof. The space U can fumnish an interpolant for arbitrary data if and only if the inter-
polation matrix A is nonsingular. An equivalent condition on the matrix A is that the
equation Ac = O can be true only if ¢ = 0. ]

Example. Let X = R and let u;(x) = 7l forj=1,2,...,n.Annxn interpolation
matrix in this special case is called a Vandermonde matrix. It looks like this:

2 L. n—1
1 x; xi X 1
n—
V= I x, x3 - X,
n—1
1 xn xﬁ xn

The determinant of V is given by the formula

detV = n (x; - x;)

1<j<i<n

This is obviously nonzero if and only if the nodes are distinct. Hence the interpolation
problem has a unique solution for any choice of distinct nodes. We can also use Theorem
1 to see that V is nonsingular. Thus, we consider the “homogeneous” linear problem,
in which we attempt to interpolate zero data. The solution will be a polynomial of
degree at most n — 1 that takes the value O at each of the n nodes. Since a nonzero
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polynomial of degree at most n — 1 can have at most n — 1 zeros, we conclude that the
zero polynomial is the only possible solution. ]

The Vandermonde matrix occurs often in mathematics. Refer to Rushanan [Rush],
Grosof and Taiani [GT], Cheney [C1], for example. It is ill-conditioned for numerical
work. See Gautschi, [Gaul, Gau2].

An n-dimensional vector space U of functions on a domain X is said to be a Haar
space if the only element of U which has more than n — 1 roots in X is the zero element.
The next theorem provides some properties equivalent to the Haar property. In the theo-
rem, we refer to point-evaluation functionals. If V is a vector space of functions on a
set X, and if x is a point of X, then the point-evaluation functional corresponding to x is
denoted by x” and is defined on V by

*(f)=fx) (feEV)

Obviously x* is linear, because
x*(af + Bg) = (af + BR)x) = af (x) + fg(x) = ax™(f) + fx*(g)

THEOREM 2. Let U have the basis {ul, Uy, ..., un}. These properties are
equivalent:

a. U is a Haar space

b. det («;(x,)) # O for any set of distinct points x|, x,, ..., x, in X

c. For any distinct points x, x,, ..., x, in X, the set of point-evaluation

. * * * . *

functionals x{, x,, ..., x,, spans the algebraic dual space U

d. Ifx, x, ..., X, aredistinct in X and if 3 Au;(x) =0 for
J=1,2,..., nthen either at least n + 1 of the coefficients A, are
nonzero, or 3" |4] =0

Proof. To show that a implies b, suppose b false. Since the determinant of (uj(x,.)) is

zero, the matrix is singular, and there exists a nonzero vector (¢, €3, .., c;) such that
n — . _n . . .
i1 (x) =0, 1 =i<n). Put u= Zj=l c;u;. Since {u, uy, ..., u,} is linearly

independent, u # 0. But u(x;) = 0 for 1 =i =< n. Hence a is false.

To show that b implies ¢, suppose b true. Then the set {x}, x5, ..., x}} is linearly
independent when these functionals are restricted to U. Indeed, if Z;':l ax! U =0,
then 3, a;x;(u) = Ofor1 <j=<n,andbyb,>"_, |a,| = 0.Since U™ is of dimension
n, the functionals span U*.

To show that ¢ implies d, assume c. Let xy, ..., x,, be distinct points that satisfy
Z:":l Aiu;(x;) =0 for 1 =j=<n. If m=n, then by ¢ we can take additional points and
obtain abasis {x], ..., x; } for U*. Then the subset {x}, ..., x: }is linearly independent on
U and all J; are zero. If m>nand 372 | |4;] # O then at least n + 1 of the J, are nonzero,
for otherwise we will have a nontrivial linear combination of n (or fewer) x ; that vanishes
on U, contrary to c.

To prove that d implies a, assume d and take m = n. Then the equation
20y A4u;(x;) = Ofor 1 =j = nimplies 37, |4;| = 0. Hence the matrix (u;(x) is non-
singular. Thus if (¢, c,, ..., ¢,) # 0, we cannot have ZJ’.‘z 1 Gl (x;) = 0. In other words,
a nonzero member of U cannot have n zeros. n
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Any basis for a Haar space is called a Chebyshev system. Here are some exam-
ples of Chebyshev systems on R:

L 1,xx2 ..., x"
2, eMX gh2X .., e (A <A<--<A)
3. I, coshx, sinhux, ..., cosh nx, sinh nx

Here are some Chebyshev systems on (0, «):

4. xM x72, . x*n A <A,<-<i)
5. x+ap7h oL e+ A)7! O=2,<A<-<2a)

Here is a Chebyshev system on the circle R/2x:
6. 1, cosf,sind,..., cosnd, sinnf

The notation R/27 denotes the set of reals with an equivalence relation: x =y if x ~ y is
an integer multiple of 27,

Are there any Chebyshev systems of continuous functions on R? and on the
higher-dimensional Euclidean spaces? No, there is an immediate and absolute barrier:

THEOREM 3. On R?, R?, ... there are no Haar subspaces of continuous
Junctions except one-dimensional ones.

Proof. Suppose that {ul, Uy, ..., un} is a Chebyshev system of continuous functions on
R’, where s = 2 and n = 2. By Theorem 2, det (;(x,)) # O for any set of distinct nodes
X|» X3, ... x, in R". Select a closed path in R® containing x, and x, but no other nodes.
By moving x, and x, in the same direction continuously along this path, we can made Xy
and x, exchange positions without allowing them to coincide at any stage in the process.
In the determinant above, rows 1 and 2 will exchange positions, and the determinant will
change sign. Since the determinant is a continuous function of x, and x,, it will assume
the value O during this process, contrary to Theorem 2. "

Even on domains X that are subsets of R°(s = 2) it may be impossible to have
Haar subspaces (of continuous functions) with dimension 2 or higher. Suppose that X is,
or contains, a subset homeomorphic to the letter Y. (For example, in R? consider the case
when X is the union of two nonparallel lines.) Then there can exist no continuous Haar
space of dimension 2 or more on X. The argument is as before. By a continuous move-
ment of nodes x, and x, along the Y-shaped figure, their positions can interchange with-
out being coincident at any stage. See the diagram.

Xq X4 Xz x
Xo 1
X4
X2 X2 j

The general theorem along these lines is due to Mairhuber [Mai]. Later elucidations and
extensions are by Curtis [Cu], Sieklucki [Si], Lutts [Lut], McCullough and Wulbert
[McW], Schoenberg [S10] and Schoenberg and Yang [SY]. The result is as follows.
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THEOREM 4. Let X be a compact Hausdorff space, and suppose that
C(X) contains a Haar subspace of dimension 2 or more. Then X is homeo-
morphic to a subset of the circumference of a circle.

Linear interpolation is closely connected to the notion of linear independence of a
set of functions. Suppose that {“p Ups ..o, um} is a set of m real-valued functions defined
on a set X. The set of functions is said to be linearly independent on X if this implica-
tion is valid:

m m
(1) D cux)=0forallx€X = > |¢]|=0
i=1 j=t

If D is a subset of X, we will say that {u,, u,, ..., u, } is linearly independent on
D if the following implication is valid:

m m
@) S qu@=0forallx€D = > |¢|=0

Observe that the property in Implication (2) is stronger than the one in (1).
To connect these notions to the interpolation problem, let us consider a finite set of
nodes in X:

3) N={x,xy, ..., x,}
Interpolating arbitrary data on N by the functions u; requires the solution of the system

@ Seguy=4 (=i=n)
j=1

THEOREM S. Equation (4) is solvable for arbitrary A,, ..., A, ifand only
if the n X m matrix A,-j = uj(x,.) has rank n.

Proof. Write Equation (4) in the expanded form

uy (xy) Uy (x1) 2
) ¢ : ++c, : =1 :
uy(x,) Upy (%) A,

This system is solvable if and only if the vector A = Ay Agyens ln)T is in the column
space of A. Equation (5) is solvable for all A if and only if the column space of A contains
R". This occurs if and only if the column rank (and the rank) of A is 7. (The rank cannot
exceed n.) ]

THEOREM 6. If m=n and if Equation (4) is solvable for arbitrary

Ays evvs Ay, then the set of functions uy, ..., u,, is linearly independent on the
set of nodes x, ..., x,.
Proof. If{u 1 eees um} is linearly dependent on the node set, then for suitable ¢, not zero,

we have ZJ"’ 1 Gl (x;) = 0 for 1 =i = n. The set of columns displayed in Equation (5)



Chapter 1

is linearly dependent and has at most n elements. Hence, the column space of A is a
proper subspace of R”, and System (5) fails to be solvable for some vectors A. ]

Problems

One must learn by doing the thing;
Jor though you think you know it,
you have no certainty until you try.

—Sophocles

1. Prove the formula given for a Vandermonde determinant.

2. Prove that the functions e%/*(1 < Jj = n) form a Chebyshev system on R.

3. Under what conditions will the functions cosh A X (1 =j = n) form a Chebyshev

10.

11.

system on R? What about (0, c0)?

. Consider the space C(X), where X is a compact Hausdorff space. Use the norm

Wl = Sup, ey | £ (x)| in this space. Prove that each point-evaluation functional has
norm 1.

. Inthe space C[0, 1] use the norm || || = [ | f(x)| dx. What is the norm of a point-

evaluation functional?

. Prove that if X is a compact Hausdorff space and if C (X) contains an n-dimensional

Haar subspace with n = 2, then X is homeomorphic to a subset of R”. Hint: Let
{u;, u,, ..., u,} be abasis for the Haar subspace, and define a map f : X — R" by
writing f(x) = [u; (x), 4, (x), ..., u,(x)]. What is the correct theorem when n = 1?

. Prove that Examples 4 and 5 given in the text are indeed Chebyshev systems on

(0, o0).

. Let{u;, uy,..., u,} be a set of real-valued functions on a set X. Prove that the set of

functions is linearly independent if and only if there exist n distinct points
Xy, Xy, ..., X, in X such that det (uj(xi)) #0.

Let {u), uy, ..., u,} be a linearly independent set of functions from a set X to the
reals. Prove that there is a subset Y of X on which {ul, Uyseons un} is a Chebyshev
system. Does there necessarily exist a maximal such Y? llustrate with n =2,
w (x) = x, uy(x) = x2onR.

In the space II, consisting of all polynomials of degree at most n, let
llPll o = max _ l<x=<1 | p(x)|. Find the norm of the functional x* when x = 2. That s,
compute

sup  |p(2)
fipll =1

You may need the theory of Chebyshev polynomials.

Let S = {u,, u,, ..., u,}, where each u; is a continuous function on a domain X. Let
Y C X. Prove these assertions: (a) If § is linearly independent on Y then it is linearly



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
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independent on X. (b) If S is a Chebyshev system on X then it is a Chebyshev system
on Y, provided that Y has at least n elements. Show by examples that in assertions
(a) and (b) we cannot interchange X and Y.

Is a subset of a Chebyshev system necessarily a Chebyshev system? For each
n=1, 2,3, ... give an example of a Chebyshev system having n elements such that
each subset is also a Chebyshev system.

Let U be an n-dimensional subspace in C‘[a, b). Let D =d/dr. Thus
D¥) = {u® : u € U}. Prove that if dim D¥*(U) = n — k then dim D' (U) = n — i
foralli €{0, 1, ..., k}. Under the same hypothesis, prove that IT, _; C U. Prove that
if D*(U)is an (n — k)-dimensional Haar space, then D' (U)is an (n — i)-dimensional
Haar space foreachi € {0, 1, ..., k}.

In the discussion of Mairhuber’s Theorem, sets homeomorphic to the letter ¥ were
employed. These sets are called “triods.” Prove that any set of disjoint triods in R?
must be countable. References: Moore [RLM] and Problem 6598 proposed by W.
Rudin in American Math. Monthly 98 (1991), 70-71.

Let U be an m-dimensional space of functions defined on a set X. Let N be a set of

n points (“nodes”) in X. Prove the equivalence of these properties:

a. for any function f on N there is a unique element « in U such that f(x) = u(x)
on N.

b. m = n, and no element u € U (other than u = 0) vanishes on N.

There exist discontinuous Haar spaces on all the spaces R®. Prove that if X is any
infinite set of cardinality at most ¢ (the cardinal number of R), then for each n there
is an n-dimensional Haar space of functions on X. (A suitable reference is Zielke’s
book [Zi].)

This chapter emphasizes linear interpolation problems. Investigate the question of
whether the function F(x) = a(l + bx)~! can be used to interpolate arbitrary data at
two points.

(Continuation of Problem 17.) Investigate whether the function F(x) = ae® + ce®*
can be used to interpolate arbitrary data at four points.

Find a set of three functions (defined on R?) such that interpolation of arbitrary data
at any two points in R? is possible by a linear combination of the three functions.
Explain why this does not contradict Theorem 3. References: Wulbert {Wull] and
Shekhtman [Shek1].

Explain why point-evaulation functionals cannot be defined on L”[0, 1],
(1=p=w).

Prove or disprove the converse of Theorem 6.

A concept stronger than that of a Chebyshev system is that of a Markov system. A
sequence of continuous functions ug, u,, ,, ... defined on R is a Markov system
if, for each n, {uo, Upsonns un} is a Chebyshev system. For example, the functions
u,(x) = x" form a Markov system. Notice that if the order of this sequence is
changed, the Markov property is lost. If possible, make Markov systems from the
examples 1-6 given on page 6.



