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chapter l

Perfect Gases

In this chapter we shall introduce the idea of atoms and show
how it has been outstandingly successful in giving a
quantitative explanation of the mechanical properties of the
simplest types of gases. In Section 1.2 we shall deduce the
pressure of a gas and other simple properties in terms of
atomic or molecular motion, and in Section 1.3 we shall go

on to consider the distribution of velocities among the gas
particles. This leads to various other topics such as the density
of the earth’s atmosphere, distribution of energy among the
particles and their modes of motion, specific heats, random
thermal motion and adiabatic changes. Finally, in Section 1.9
we take account of the collisions which limit the mean free
paths of gas particles and show in the remaining sections how
this leads to a simple understanding of thermal conductivity,
viscosity and diffusion in gases.

1.1 ATOMIC STRUCTURE OF MATTER

One of the oldest ideas in science is that the ordinary matter of the world
consists of large numbers of small atoms. It seemed impossible that a
piece of matter could be cut up repeatedly into smaller and smaller parts;
there must come an end to this when it was reduced to ultimate consti-
tuents. It was also felt that the sensations of heat, cold and the force of
the wind might be brought about by the impacts of innumerable smalil
particles flying about.

The atomic theory became popular in the 16th and 17th centuries, when
it was used to explain the structures and properties of solids. The dense-
ness and the hardness of solids suggested that atoms in them must be
packed together particularly closely. Really close packing has to be done

1



2 The Mechanical Properties of Matter

in a systematic orderly way, and this agreed with what was known then
about crystals. Their flat faces, sharp edges and regular angles suggested
that crystals are a form of matter in which the atoms are arranged in
orderly patterns, such as may be produced by stacking large numbers of
equal spheres together. Robert Hooke, in fact, showed that the various
common shapes of alum crystals could all be reproduced from a pile of
musket shot stacked in a single regular pattern. Other people tried to
explain the plasticity and fracture of solids, the nature of alloyed metals
and changes of crystal structure in terms of the ways in which atoms pack
together and move about in crystals.

This early theory failed to take root, however, because it was speculative
and lacked proof, even though it has since been proved broadly correct.
Some of the best evidence for the atomic structure of matter has in fact

()

Fig. 1.1, Field-ion microscopy. {a)Arrangement of specimenandscreen; (b)schematic
section through tip, showing atomic structure.

come from the study of crystals during the present century. The ability
of crystals to act as diffraction gratings for X-rays has proved beyond all
doubt the regularity of atomic structure in them. In recent years even
more direct methods have been developed, based on electron microscopy
and other high-resolution microscopical techniques. In one such method,
called field-ion microscopy, an extremely fine hemispherical tip of a speci-
men is examined, as shown in Fig. 1.1. This tip is positively charged
electrically, so that lines of electric force radiate from it to a nearby
fluorescent screen. A trace of gas such as helium is allowed to enter a
vacuum chamber which surrounds the specimen. These atoms become
positively charged when they touch the atoms of the tip and then accelerate
down the lines of force to the screen, where they produce a visible image
of the tip. The magnification and resolution of this image are high enough
to show the individual atoms of the tip. The frontispiece shows an example.
This is of course a flat picture of a hemispherical surface, so that there is
some distortion; but the atoms and crystal facets of the surface are clearly
visible.
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The idea of atoms helped chemistry to make great progress in the 19th
century. Striking regularities were observed in the proportions by which
the chemical elements combine together. A table of unit chemical weights
was drawn up, each element being given its own individual value in such
a way that unit weight of one element always combines with oue or a few
unit weights of another. This suggested that each unit weight was pro-
portional to the mass of a unit particle of the element and that chemical
combination involves the joining together of such unit particles in definite
and reproducible small numbers. It was also discovered that gases of the
elements combine chemically in simple proportions by volume as well as
by weight, The observed proportions suggested that equal volumes of
gases contain equal numbers of particles at the same temperature and
pressure (Avogadro’s hypothesis). A complicating factor was that in most
gases of clements the particles are not single atoms but molecules con-
taining two or more atoms in chemical combination, e.g. O,, O,, H,, N,,
Cl,. Two tables were thus necessary, one for single atoms and one for
molecules. These are of course the familiar tables of azomic and molecular
weights of the elements.

The scales were chosen so that a single oxygen atom has a weight of 16.
The molecular weights of oxygen (O,) and ozone (0O,) are thus 32 and 48,
respectively. A sample of an element contains 1 mole of particles (atoms
or molecules) when its atomic or molecular weight is measured in grammes
weight. A mole is now known to contain 6-025 x 10** particles, this
number being known as Avogadro’s number (N,). Thus, a single oxygen
atom weighs 16 Ny ™!, i.e. 2:66 x 10722 g. The quantity 1-66 x 10~2* g
(ie. No~'g) is the atomic mass unit. Atomic weights are given in
Table 1.1. Their wide range should be noticed, particularly as the den-
sities of liquids and solids depend mainly on the weights of their atoms.
A sample of an element with density p and atomic weight 4 contains
Nyp/A atoms/cm?.

Atoms and molecules are of course very small. The volume of
1 mole of gas at NTP (i.e. 0°C and 760 mm of mercury pressure) is
22,400 cm®. Divided into Avogadro’s number, this gives Loschmidt’s
number, 2-7 x 10'° particles/cm®, which corresponds to an average
distance of about 33 x 1072 ¢m from one particle to the next. The
particles themselves are even smaller. When a vapour is condensed to
a liquid or solid, it shrinks to about one-thousandth of its volume at
NTP. The atoms or molecules are thus only about 3 x 10~8 cm across.
Atomic sizes can now be measured accurately by X-ray diffraction
analysis of crystals. Because of their smallness, it is convenient
to use a special unit of length, the Angstrom (1 A =10"%cm) for
them.
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8 The Mechanical Properties of Matter
1.2 KINETIC THEORY OF GASES

The other outstanding success of the atomic theory in the 19th century
was its quantitative explanation of the mechanical properties of gases.
Gases are simple forms of matter. They have low densities, expand to fill
their containers and are easily compressed. These properties suggested
that the particles in gases are mostly too far apart to exert forces on one
another. Moreover, because equal numbers of gas particles in equal
volumes at equal temperatures produce the same pressure (at low den-
sities and high temperatures), whatever their chemical species, it seemed
that this pressure was produced by the particles acting in a purely mecha-
nical way as point centres of mass.

A gas was thus pictured as a collection of small elastic spheres, each of
mass m, velocity ¢, momentum mc and kinetic energy imc?, flying about
ceaselessly as separate individuals, moving in straight lines and bouncing
off the walls of their containers and also, when they happen to meet, off -
one another. When a gas is allowed to remain undisturbed in its container
for a length of time, these collisions cause it to settle down into a state of
equilibrium in which it is uniform (i.e. its particles are distributed impar-
tially throughout the whole container—we ignore for the moment the
effect of gravity), is isotropic (i.e. its particles move impartially in all
directions) and is constant in its bulk properties such as pressure and
temperature.

When the gas is in this state, the theory of its properties becomes much
simpler. We can, for example, pretend that the gas particles bounce oft
the walls of their container like perfect elastic spheres rebounding from a
perfectly smooth, reflecting surface, even though it is known experimen-
tally that they do not do this but tend to stick to the surface for a little
time before flying off in some unrelated: direction. The reason is that, be-
cause the gas is uniform and isotropic, particles approach and leave the
walls in random directions, so that the overall distribution of directions
of motion is unaffected by the walls. Also, when the gas is constant in its
properties, the particles on average approach and leave the walls in the
same numbers and with the same kinetic energies. The walls thus behave
to the gas as a whole, even though not to individual particles, as if they
were perfect reflectors of its particles. By the same argument, the distri-
bution of particle motions is unaffected by collisions among the particles
themselves; on average, as many particles are knocked into a particular
direction and speed as are knocked out of it. It also follows that the shape
of the container does not affect the equilibrium properties of the gas;
particles re-enter the gas from a wall in just the same numbers and with
just the same velocities as they would if that wall were not there and they
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had come instead from another part of the gas behind it. The container
can thus be altered in shape (at constant volume), by removing some walls
and building others in other positions, without altering the properties of
the gas.

The leading idea in the kinetic theory of gases is that gas pressure is
caused by the impacts of gas particles on the walls of the container. The
equilibrium properties mentioned above enable us to calculate the pressure
in terms of the behaviour of a single gas particle moving in a cubical box
with perfectly reflecting sides of length L, as shown two-dimensionally in
Fig. 1.2. We resolve its velocity ¢ into component velocities », v and w,

Fig. 1.2. Path of a gas particle in a box.

parallel to the edges of the box. At each collision the velocity component
perpendicular to the wall is exactly reversed and the other two components
unchanged. Each collision which changes, say, +u to —u, also changes
the momentum of the particle by 2mu and hence, because momentum is
conserved, gives an outward momentum 2mu to the wall in question. This
wall is hit /2L times per second by the particle and so receives momentum
from it at a rate mu?/L per second. From Newton’s second law (force =
rate of momentum change) this gives a force mu?/L on the wall. The

pressure p, i.e. force per unit area, on this wall due to all particles in the
gas is then given by

Ymil=m_ ,
=EET0Y Y, (L1)

where ¥ (=L?) s the volume and the sum is over all particles. We see that
each particle contributes independently to the total pressure. This remains
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true if the particles are of different chemical species and have different
masses m,, m,, ... etc., the sum then being replaced by meug? + myuy® +
...etc. This gives Dalton’s law: the total pressure exerted by a mixture of
different gases is the sum of the partial pressures of each of these gases
separately.

The pressures on the other faces are found similarly. Since the gas is
uniform and isotropic, they are all equal. Hence,

Y=Y =Y w=3Y @+ +w) =13 2 =iNc?, (12)

where ¢? is the mean-square velocity and N is the number of particles in
volume ¥. Substituting in Equation (1.1), we obtain

3Nmc? = 3E = pV, (1.3)

where E(=5Nm25) is the total kinetic energy of the particles. Since
Nm = pV, where p is the density, the mean-square speed is given by

a2 (1.9)
P

The densities of hydrogen and nitrogen at NTP are 9 x 1075 and 1-25 x
10~3 g cm™3, respectively. If p =~ 10° dyn cm™* (atmospheric pressure),
this gives the speed (root mean-square) of hydrogen molecules at NTP as
about 1-8 x 105cmsec ™! (= 1 mile sec ') and that of nitrogen molecules as
about 5 x 10 cm sec™!. These are about the muzzle velocities of rifle bul-
lets. There is direct evidence for these high speeds from the fact that sound
waves in air, which are transmitted by the motion of air molecules, travel
at about 3-3 x 10* cm sec™! under ordinary conditions (cf. Section 12.4).
When a gas is heated at constant pressure, it expands; when heated at
constant volume, its pressure rises. Thus, pV increases as heat energy is
given to the gas. Since pV is proportional to the kinetic energy of the
particles, we suppose that this kinetic energy is heat energy. The hotness
of the gas, i.c. the temperature, is thus a measure of the average kinetic
energy per particle. Of all the various ways in which we could define
temperature in terms of this kinetic energy, the simplest and most useful
is to make it directly proportional, i.e. Toc E. In fact, the absolute tem-

perature T on the perfect gas scale is defined from the relation

Imc? = 3kT, (1.5)
where k is a constant. Substituted into Equation (1.3), this becomes
pV = NkT, (1.6

the familiar equation of state of a perfect gas. It summarizes the two laws
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of a perfect gas: Charles’ law (V is proportional to T at constant p) and
Boyle’s law (pV is constant at constant 7). We also see that the specific
heat (rate of increase of energy with temperature) belonging to the trans-
lational motion of the particles of a perfect gas is the same at all tem-
peratures; this follows from the fact that we have defined temperature as
proportional to the energy of such a gas.
For 1 mole of gas (N = N, = Avogadro’s number), the equation of

state becomes

pV =RT, _ 1.7
where

R = Nyk. (1.8)

The constants k and R are universal constants, the same for all substances.
This can be proved in a very general way from statistical mechanics. It
also follows directly from Avogadro’s hypothesis. Consider r two gases
with particles of masses m, and m, and mean-square velocities cl 2 and ¢,?,
which are at the same temperature T and which have the same volume
¥ and pressure p. Then, by Avogadro’s hypothesis, they have the same
number of particles, N; = N,. Since pV = :}Nlmlcl = IN,m,c;2, it
follows that

myc,? = mycy? (1.9)

and, hence, that k in Equation (1.5) is the same for both gases.

We see that light particles move faster than heavy ones at the same
temperature. This enables us to separate two gases from a mixture by
allowing them to leak out of small holes in their container. The rate of
effusion from such a hole is proportional to the thermal velocity of a gas
particle, and so varies inversely with the square root of the mass (Graham’s
law). Thus, hydrogen escapes four times as fast as oxygen. The holes
must be small to prevent the gas from streaming out in bulk and thereby
sweeping heavy and light particles along together. A porous membrane
(e.g. unglazed porcelain) is often used, in which case the effect is referred
to as transpiration. The method is important for separating gases of
similar properties, such as isotopes (atoms of different masses belonging
to the same chemical element). When the isotopes differ only slightly in
mass, as in the separation of uranium isotopes by the gaseous diffusion
method, the degree of separation achieved by the passage through a single
membrane is small. It is usual then to pass the gas (e.g. uranium hexa-
fluoride) through a series or cascade of separations, each stage of which
consists of a membrane with ingoing and outgoing chambers, together
with pumps to send the enriched gas forward to later stages and the
impoverished gas back to earlier stages.
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To find the numerical value of R in Equation (1.7), we fit this equation
to real gases; these always obey this equation at sufficiently low densities.
When R and N, are known, then k in Equations (1.6) and (1.8) can be
found. The temperature scale is chosen so that there are 100 degrees be-
tween the freezing and boiling points of water at 1 atm pressure; we then
have k = Boltzmann’s constant = 1-38 x 10716 erg deg™' and R = the gas
constant = 8-313 x 107 erg deg™! =1-986 cal deg™! mole™'. At the
freezing point of water a gas at normal pressure decreases in volume
by about 1 part in 273 for each degree fall in temperature. Thus, a perfect
gas (which obeys Equation (1.6) under all circumstances) should shrink to
zero volume and lose all its kinetic energy at about —273°C, The tem-
perature T in Equation (1.6) is the absolute temperature, measured in
degrees Kelvin (°K). The absolute zero of temperature is 0°K
(= —273-16°C = —459-69°F).

1.3 THE MAXWELL-BOLTZMANN DISTRIBUTION LAW

Owing to gains and losses of energy in chance collisions, the actual
energy of a particle at any instant fluctuates widely about its average value.
Although these individual fluctuations are highly erratic, the average dis-
tribution of a large number of particles over various levels of energy is a
steady and calculable property of a gas, provided there is thermal equilib-
rium among its particles.

Fig. 1.3. A collision and its inverse. The broken lines show each collision as seen by
an observer moving with the centre of mass of the particles.

Let all particles have the same mass. Let f be the number of particles
with velocity c¢; or, more precisely, let f{(c) dc be the number within a small
range dc of velocities centred about the value ¢. We expect fto depend on
¢ and so write it as f(¢). In Fig. 1.3 we show a collision in which two
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particles change their velocities from ¢, and ¢, to ¢ and c¢,. The total
kinetic energy of the particles is conserved; hence,

clz + 022 = C32 + C‘_z. (1.10)

The chance of such a collision occurring in a given time is proportional
to the numbers, f(¢,) and f{c,), of both kinds of particles in the gas. The
rate of such collisions is thus given by af{c,)f(c,), where « is a propor-
tionality factor. Consider next the inverse collision in which two particles
change their velocities from ¢, and c, to ¢; and c, (Fig. 1.3). The rate of
this may similarly be written «'f{c;)f(c,). Since the gas is in equilibrium,

Fig. 1.4. Velocity diagram.

these two rates are equal. We must also have a = «’, since observers
moving with the centres of mass of the particles would see the two
collisions as completely equivalent, as shown by the broken lines in Fig. 1.3.

Hence, f(c,)f(c;) = fc3)f(cy), i.e.
Inj(e,) + Inf(cz) = In f(cs) + In f(c,). (1.11)

A solution of Equatnons (1.10) and (1.11) suggests itself immediately.
It is simply In f{c) oc c?, or

fley=Ae?e, (1.12)

where 4 and B are constants. The minus sign is introduced since, for a
finite kinetic energy, f(c) must decrease as c? increases. It can be proved
by further analysis that this equation is the only solution.

We sometimes need to know the numbers of particles moving at various
speeds, irrespective of direction. In the velocity diagram of Fig. 1.4, ¢ is
represented by the vector shown and f{c) dc is the number of particles
whose velocities are represented by points lying in the element shown at
the end of this vector. This element is of thickness dc and stands on unit
area of a sphere of radius ¢. To find the total number of particles N(c) dc



