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2 Chapter 1 Introduction

From the study of thermodynamics, you have learned that energy can be
transferred by interactions of a system with its surroundings. These interactions
are called work and heat. However, thermodynamics deals with the end states of
the process during which an interaction occurs and provides no information
concerning the nature of the interaction or the time rate at which it occurs, The
objective of this text is to extend thermodynamic analysis through study of the
modes of heat transfer and through development of relations to calcuiate heat
transfer rates. In this chapter we lay the foundation for much of the material
treated in the text. We do so by raising scveral questions. What is heat transfer?
How is heat transferred? Why is it important to study it? In answering these
questions, we will begin to appreciate the physical mechanismis that underlie -
heat transfer processes and the relevance of these processes to our industrial and
environmental problems.

1.1 WHAT AND HOW?

A simple, yet general, definition provides suflicient response to the question:
What is heat transfer? '

Heat transfer (or heat) is energy in transit due to a temperature difference.

Whenever there exists a temperature difference in a medium or between media,
heat transfer must occur.

As shown in Figure 1.1, we refer to different types of heat transfer processes
as modes. When a temperature gradient exists in a stationary medium, which may
be a solid or a fluid, we use the term conduction to refer to the heat transfer that
will occur across the medium. In contrast, the term convection refers to heat
transfer that will occur between a surface and a moving fluid when. they are at
different temperatures. The third mode of heat transfer is termed thermal
radiation. All surfaces of finite temperature emit energy in the form of

Conduction through a solid Convection from a surface Net radiation heat exchange

or a stationary fluid to a moving fluid between two surfaces

T, T\ >T T Te> T Surface, Ty
| Moving fluid, Ty,

q
[ “

=
/- J x\ Surtace, Ta

At

b4bd

Figure 1.1 Conduction, convection, and radiation heat transfer modes.



1.2 Physical Origins and Rate Equations

clectromagnetic waves. Hence, in the absence of an intervening medium, there i3
net heat transfer by radiation between two surfaces at different temperatures.

1.2 PHYSICAL ORIGINS AND RATE EQUATIONS

As engineers it is important that we understand the',ph_v.s'ical mechanisms that
underlie the heat transfer modes and that we be able to use the rate cquationy
that quantify the amount of energy being transferred per unit time.

1.2.1 Conduction

At mention of the word “conduction.” we shiould immediately conjure up
concepts of atgmie and molecular activity, for it is processes at these levels that
sustain this mode of hedt transfer. Conduction may be viewed as the transfer 3
energy from the more energetic to the less energetic particles of a substance dué
to interactions between the particles. ' .

The physical mechanism of conduction is most easily explained by,
considering a gas and using ideas familiar from your thermodynamics back-
ground. Consider a gas in which there exists a temperature gradient and assume
that there is no bulk motion. The gas may occupy the space between two surfaces
that are maintained at different temperatures, as shown in Figure 1.2. We
associate the temperature at any point with the encrgy of the gas molecules in
the vicinity of the point. This energy is related to the random translational
motion, as well as to the internal rotational and vibrational motaons of the
molecules. Moreover, higher temperatures are associated with hlgher molecular
energies, and when neighboring molecules collide, as they are constantly doing,
a transfer of energy from the more encrgetic to the less energetic molecules must:
occur. In the presence of a temperature gradient, energy transfer by conduction:
must then occur in the direction of decreasing temperature. This transfer is

T ™>Ts

o, . Q, Q5o  os
! gi fqo‘? %
NS '»f’g?a‘"' 1

» Figure 1.2 Association of conduction heat transfer with diffusion of energy due to y
molecular activity.

Tg.

-



Chapter T Introduction

evident from Figure 1.2, The hypothictical plane at x, is constantly heing crossed
by molecules from above and below due to their random motion However,
molecules from above are associated with a larger temperature than those ¥rom
below. in which case there must be a net transfer of energy an the posttive v
direction. We may speak of the net transfer of energy by random molecular
motion as a diffusion of encrgy.

The situation 1s much the same in liquids. although the molecules are more
closcly spaced and the molecular interactions arc stronger and more frequent.
Similarly. in a sohd. conduction may be attributed to atomic activity in the form
of lattice vibrations. The modern view is to ascribe the encrpy transfer (o lattice
wares induced by atomic motion. in a nonconductor. the cnergy transfer is
exclusively via these lattice waves: in a conductor it 15 also due_to the
translational motion of the frec clectrons. We treat the important properucs
associated with conduction phcnomcnd it Chapter 2 and in Appendix A.

Examples of conduction heat transfer are legion. The exposed end of a
metal spoon suddenly immersed in-u cup of hot coffee wil! eventually be warmed
duc to the conduction of energy through the spoan. On a winter day there s
significant encrgy loss from a heated room to the outside air. This loss s
principally due to conduction heat transfer through the wall that separates the
raom air from the outside air. -

Itis possible to quantify heat transfer processes in terms of appropriate rate
equations. These cquations may be used to compute the amount of energy being
transferred per unit time. For heat conduction. the rate equation is known as
Fourier's law. For the one-dimensional plane waltshowa in hgure 1.3 having a
temperature distribution T(x), the rate equation is expressed as

dT - :

Ck
4 dx

. (Lh
The heat flux ¢ (W 'm?}is the heat transfer rate in the v dircction per unit area
perpendicular to.the direction of transfer. and it is proportional to the
teraperature gradient, dTdx, in this direction The proportionality constant & is
a transport property known as the thermal conductivity (Wm-Kj and 15 a
characteristic of the wall material. The minus vign is a consequence of the fact
that heat s transferred in the dircction of decreasing temperature. Under the
steady-state conditions shown in Figure 1.3, where the temperature distribution

Figure 1.3 Omne-dimensional heat transfer by conduction
Lo~ sdillusion of energy)
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é Chapter | Introduction
Assumptions:

1. Steady-state conditions.
2. One-dimensional conduction through the wall
3. Constant properties.

q \
Amalysis:

Smce. heat transfer through the wall 1s by conduction, the heat flux may be
determined from Founer’s law. Using Equation 1.2

250K
0.15m

The heat ftux represents the rate of heat transfer through a section of umt
area. The wall heat loss is then

g, ={(HW)q7=(0.5m x 3.0 m) 2833 W/ni? = 4250 W 4

' q;=k£g= L7 W/m-K x -=2833 W/m?

Commenis:

1 Note direction of heat flow,
2. Note distinction between heat flux and heat rate.

1.2.2 Convection \

The convection heat transfer mode is comprised of two mechanisms In addition
to energy transfer due to random molecular motion (diffusion), there 1s also energy
being transferred by the bulk, or macroscopic, motion of the fimd. This fimd
motion 1s associated with the fact that, at any instant, large numbers of
molecules are moving collectively or as aggregates. Such motion, in the presence
of a temperature gradient, will give rise to heat transfer. Because the moleculesn
the aggregate retain their random motion, the total héat transfer is then due to a
superposition of energy transport by the random motion of the molecules and
by the bulk motion of the fiuid. It is customary to use the term convection when
referring to this cumulative transport and the term advection when referring 10
transport due to bulk fluid motion.

We are espeaally interested n convection heat transfer, which occurs
between a fluid in motion and a bounding surface when the two are at different
temperatures. Consider fluid flow over the heated surface of Figure 14 A
consequence of the flmd-surface interaction is the development of a region 1n
the flud through which the velocity varies from zero at the surface to a finite
value u, associated with the flow. This region of the fluid 1s known as the
hydrodynamuc, or velocity, boundary layer. Moreover, if the surface and flow
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as much as 20% of elemental iodine introduced into the column was strongly retained. A
derivatization similar to that described above for chlorine may, therefore, be required.
Other elements, with the exception of Hg, may be 100 reactive or involatile for conven-
. tional GC. However, a variety of metallic elements (Na, K, Cs, Ba, Eu, Yb, Tm, T, Pb, Bi,
Po, Am, Cf, Fm, Md, Lr, etc.) [54-58] can be chromatographed by thermochromatography
(Section 12.1.2.3) at 600-1400 K in titanium, graphite, or quartz columns. Thermochroma-
tography includes any GC technique that operates above the maximum temperature of
conventional GC, ca. 400°C. Typically, this will involve the use of tube furnaces with
. packed or unpacked quartz or other tubing as the chromatographic column. Although this
technique does not at presemt appear to be suitable for analytical element separations, it
does allow the adsorption and volatilization behavior of metallic elements to be studied
and has been useful for the characterization of heavy actinide elements.

12.1.2 Binary compounds of metallic and nonmetallic elements

The main groups to be considered here comprise monomeric hydrides, halides, and
oxides sufficiently volatile to be determined by conventional GC or by thermochromatog
raphy. Gaseous species, 6.g., CHg, NH3, HzS, CO, CO,, and SO, are not discussed.

12.1.2.1 Water

For the determination of water, GC is rapidly evolving as a very selective and sensitive

method. It can replace, or complement, established methods, based on oven drying, Karl
‘ Fischer titrations, infrared absorption, and thermogravimetry [59,60].

For determining water in liquids and solids above ca. 0.1%, established procedures
based on chromatographic separation on porous polymers and thermal conductivity de-
tection are suitable, provided water is well separated from other components in the
chromatogram. Sorbents described for this purpose are based on polystyrenes, including
Porapaks Q, N, T, Super Q, Chromosorbs 101, 102, 104, Polysorb 1, GPX-103 [61-65];
methacrylate polymers and copolymers [66,67], and carbon molecular sieves, such as
Carbosieve S and Carbopack C [61]. On many porous polymers tailing of the water peak
occurs. This can be reduced by the addition of polar compounds, such as methanol, to
the carrier gas [68). Porous polymers coated with polar stationary phases have also been
enlisted to decrease tailing and retention and to improve selectivity [69]. Recent applica-
tions of such columns are described for water determination in vitamin C [70], liquid
ketones [6?3,71], crude mineral oil [64], pharmaceuticals {65], liquid petroleum [72], and
high-purity hydrides [73]. Because of the limited sensitivity of this procedure, water con-
centrations below 0.1% require a preconcentration step {63], which increases analysis
time.

Low concentration (<0.1%) of water in solids, liquids, and gases can be determined
indirectly by reaction GC. In these methods water is converted to hydrogen, methane,
acetylene, or other organic compounds [9). Their advantage is that they permit the use of

References on p. B61



] Chapter §  Introduction

associated with a phase change between the liquid and vapor states of the fluid.
Two special cases of interest in this text are boiling and condensation.

Regardless of the particular nature of the ¢onvection heat transfer mode,
the appropriate rate equation is of the form

"=NT,~-T,) . ‘ (1.3).

where g”, the conveciive heat flux (W/m?), is proportional to the difference
between the. surface and fluid temperatures, T, and T,, respectively. This
expression 8 known as Newton's law of coolmg, and the proportionality
constant k(W/m? - K) is referred to as the convection heat transfer toefficient, the
film conluctance, or the film coefficient. It encompasses all the effects that
influence the convection mode. It depends on conditions in the boundary layer,
which are influenced by surface geometry, the nature of the fluid motion, and a

- number of the fluid thermodynamic and transport properties. Moreover, any
study of convection ultimately reduces to a study of the means by which h may
be determined. Although consideration of these means is deferred to Chapter 6,
it is important to note that convection heat transfer will frequently appear as a
boundary condition in the solution of conduction problems (Chapters 2 to 5). In
the solution of such problems we presume h to be known, using typical values
given in Table 1.1. Note the range of values associated with the various
convection processes.

123 Radiation

Thermal radiation is energy emitted by matter that is at a finitc temperature.
Although we focus primarily on radiation from solid surfaces, emission may also
occur from liquids and gases. Regardiess of the form of matter. the emission may
be attributed to changes in the electron configurations of the constituent atoms
or molecules. The energy of the radiation field is transported by electromagnetic
waves (or alternatively, photons). While the transfer of energy by conduction or

Table 1.1 T_ypical values of the convection heat transfer coefficient

h
PROCESS (Wim?-K)
Free convection ’ 5-25
Forced convection
Gases ' 25-250
Liquids ~ 50-20,000

Convection with phase change
Boiling or condensation 2500- 100,000




