CHAPTER 1 FUNDAMENTAL EQUATIONS FOR FLOW PROCESSES IN THE ULTRACENTRIFUGE

A.	Introduction	1
B.	The coordinate system	1
C.	Definitions of flows (or fluxes)	3
D.	Hydrodynamic equations	9
	 Equation for the conservation of mass Equation of motion Equation for the conservation of energy 	10 10 11
E.	Generalization of the second law of thermodynamics	12
	1. Equation for the rate of entropy production	13
F.	Mechanical equilibrium	16
G.	Phenomenological flow equations and coefficients 1. Onsager's reciprocal relations 2. Transformation of phenomenological flow equations 3. Practical flow equations	18 18 19 23
Н.	Flow equations for sedimentation in the ultracentrifuge	24
	 Equations for binary and ternary solutions Definitions of sedimentation coefficients and diffusion coefficients 	26 28
ľ.	The Svedberg relation and its extensions	29
J.	The differential equations for the ultracentrifuge	31
K.	Electrolyte solutions	32
	 Flow equations for ions Flow equations for electrolyte components 	33 36
L.	Tests of Onsager's reciprocal relation	39
M.	Chemically reacting systems	42

Ap	pendix A	42
Аp	pendix B	44
Аp	Appendix C	
Re	ferences	45
CH	IAPTER 2 SEDIMENTATION TRANSPORT IN TWO-COMPONENT SYSTEMS	
	1. Introduction	47
A.	The scope of this chapter	47
B.	Initial and boundary conditions	47
C.	Concentration dependence of s and D	50
	1. Limiting sedimentation and diffusion coefficients	52
1	I. The Case of No Diffusion	53
A.	The general solution to the Lamm equation with $D=0$	53
₿.	Solutions for typical cases of $s(c)$	54
II A.	I. Solutions of the Faxén Type Introduction	63
B.	Faxén's exact solution	64
	1. Asymptotic forms of Faxen's solutions	69
	2. Features of concentration distribution curves	71
	3. Features of concentration gradient curves	75
C.	A Faxen-type solution relevant to the synthetic boundary cell	79
D.	A Faxén-type solution relevant to the conventional cell	81
	1. Effects of the air-liquid meniscus	83
E.	Band centrifugation	86
	1. The Rubin-Katchalsky theory	88

	CONTENTS	XI
F.	Concentration-dependent systems	92
	1. An approximate Faxén-type solution with $s = s_0(1 - k_s c)$ 2. Evaluation of D from height-area ratios	93 98
Ġ.	Numerical solutions of Dishon et al.	100
H.	The method of moments	106
	 Application to boundary centrifugation Application to band centrifugation 	106 111
I.	Methods for evaluation of small sedimentation coefficients	116
IV	. Solutions of the Archibald Type	118
Ä.	Archibald's exact solution	118
B.	Approximate solutions	119
	1. The rectangular-cell approximation 2. Higher approximations	120 123
C.	Features of Archibald-type solutions	125
٧	. Pressure Effects	127
A.	Introduction	127
В.	Basic equations	128
C.	Important features of sedimentation boundary	130
D .	Correction of the apparent sedimentation coefficient for pressure: The Billick-Fujita method	133
	 The practical method of Blair and Williams Remarks 	134 137
Rei	ferences	139
СН	APTER 3 SEDIMENTATION TRANSPORT IN MULTICOMPONENT SYSTEMS	
1	I. Introduction	142
Α.	The scope of this chapter	142

B.	Expressions for refractive index and its gradient	143
II	. Paucidisperse Solutions	148
A.	Basic equations and assumptions	148
B.	The case of uncoupled sedimentation	150
	 Resolution of schlieren boundary curves Evaluation of weight fractions and sedimentation coefficients 	151 153
C.	The case of coupled sedimentation	154
*	 Generalization of the square-dilution rule The theory of Trautman et al. for the Johnston-Ogston effect Experimental tests of the theory of Trautman et al. 	157 159 163
D.	Band centrifugation	165
III	. Polydisperse Solutions	166
A.	Distribution functions	166
В.	Refractive index gradient curves for polydisperse solutions	170
C.	The boundary spreading equation	173
D.	The Bridgman equation	174
E.	Baldwin's approach by the method of moments	177
Ħ.	Gosting's solutions to the boundary spreading equation	180
	 The case of electrophoresis Baldwin's analyses with a Gaussian distribution 	183 184
G.	The case of interrelated s and D	190
H.	Extrapolation to infinite dilution	193
	 The procedure of Williams et al. The procedure of Baldwin et al. The procedure of Gralén and Lagermalm 	194 194 195
I.	Applications to actual systems	195
	 Gelatin solutions Synthetic polymers 	195 197

A. Continuity equations for monomer-j-mer association

242

242

III. Self-association

B.	Monomer-j-mer systems with infinite rate constants and negligible diffusion	244
	 Features of gradient curves Sedimentation rates 	247 250
C.	General self-associating systems with infinite rate constants and negligible diffusion	252
	1. Special cases	254
D.	Concentration dependence of sedimentation coefficients	257
	1. Extension of Gilbert's theory to concentration-dependent systems	258
	2. Correction for diffusion	262
IV	/. Isomerization	264
A.	Basic equations	264
В.	Van Holde's solution for the case of no diffusion	266
C.	Studies of the general cases	267
V	/. Complex Formation	269
A. .	Introduction	269
B.	The theory of Gilbert and Jenkins	270
	 Expressions for the concentration distributions of individual solute species Illustrations of the Gilbert-Jenkins asymptotic solutions 	272 274
C.	The Nichol-Winzor treatment in terms of constituent quantities	276
	ferences	277
CH	IAPTER 5 SEDIMENTATION EQUILIBRIUM IN NONREACTING SYSTEMS	
1	I. Introduction	279
A.	Sedimentation equilibrium	279
₿.	Approach to sedimentation equilibrium	280
C.	Basic equations for sedimentation equilibrium	280

	CONTENTS	ΧV
I	I. Two-component Systems	283
A.	Basic equations and assumptions	283
	1. The integrated form of Williams et ai.	284
	2. Expansion in powers of c_1^0	285
	3. Pseudoideal or very dilute solutions	288
	4. The meniscus-depletion method	290
B.	Virial expansion for sedimentation equilibrium	293
C.	Determination of chemical potentials	294
D.	Correction for pressure effects	296
411	I. Three-component Systems	302
A.	Basic equations	302
30 °	1. Effects of binding	305
	2. The Lamm theory for electrolyte solutions	308
B.	The Casassa-Eisenberg theory	312
	1. Osmotic equilibrium	313
	2. The sedimentation equilibrium equation for the macromolecular component on the c-concentration scale	316
	3. Actual processes for the determination of M ₁	318
IV	7. Polymer Solutions	320
A.	Basic assumptions and equations	320
B.	Virial expansion for sedimentation equilibrium	323
C.	Other expansions for $1/M_{\rm app}$	331
D.	The short column method	334
V	. Determinations of Average Molecular Weights and Molecular Weight Distribution	335
A. .	Introduction	335
B.	Integral equations for molecular weight distribution	336
	1. The Lansing-Kraemer expressions for average molecular weights	337
	2. The approach to $g(M)$ by the method of moments	339
	3. The integral equation approach to g(M)	341

C.	Sensitivity of sedimentation equilibrium to solute polydispersity in molecular weight	342
D.	The variable λ method	344
	1. Expressions for average molecular weights	345
	2. Experimental determination of the function $q(\lambda)$	347
	3. Extensions of the method	347
	4. Experimental tests	356
V	I. Sedimentation Equilibrium in a Density Gradient	354
A.	Introduction	354
В.	Basic equations and definitions	354
C.	Determinations of M_1 and \bar{v}_1	358
D.	Density gradient	359
E.	Buoyant density	361
F.	The empirical method of Szybalski	363
G.	Heterogeneous macromolecular solutes	367
	1. Solutes heterogeneous in molecular weight	368
	2. Two solutes differing in both molecular weight and buoyant density	369
Н.	Effect of density heterogeneity on molecular weight determination	371
Ap	pendix A	373
Ref	erences	374
СН	APTER 6 SEDIMENTATION EQUILIBRIUM IN CHEMICALLY REACTING SYSTEMS	
A.	Introduction	377
I	Discrete Self-association	378
Α.	Thermodynamic relations	378
	1. Equations for sedimentation equilibrium	380
В.	The theory of Adams	384
	1 Cases of manamer dimer and manamer-trimer association	388

	CONTENTS	xvii
C.	The Chun-Tang theory	388
D.	Examples of synthetic data	390
E.	Examples of actual data	392
F.	Data analysis	395
	1. Results on β-lactoglobulins	396
G.	The SVRY theory	400
	1. Illustrations with actual data	404
Н.	Remarks	406
1	II. Indefinite Self-association	407
Á.	Equilibrium relations	407
В.	The theory of Van Holde and Rossetti	409
C.	Other methods of analysis	, 412
D.	The uniqueness problem	413
II	I. Complex Formation	416
A.	Introduction	416
В.	The Adams theory for the reaction $A + B \rightleftharpoons AB$	417
C.	The Nichol-Ogston theory for the reaction $mA + nB \rightleftharpoons A_m B_n$	421
ľ	V. Other Topics	423
A.	The conservation of mass for reacting systems	423
В.	Pressure effects	424
C.	Charge effects	426
Аp	pendix A	427
Ap	pendix B	427
Re	ferences	428
СН	APTER 7 APPROACH TO SEDIMENTATION EQUILIBRIU	J M
A.	Introduction	430
B.	The theory of Weaver	430

	٠		•	
X۷	1	ì	1	

C.	The theory of Van Holde and Baldwin	432
D.	The theory of Hexner et al. for the overspeeding technique	435
E.	Application of Synthetic Boundary Cells	438
	1. Multiple-step concentration distribution	441
F.	Measurement of the diffusion coefficient from the rate of approach to equilibrium	443
G.	Effects of concentration dependence of s and D on the approach to equilibrium	445
Н.	Other topics	447
Ref	rerences	448
INI	DEX	451

CHAPTER

1

FUNDAMENTAL EQUATIONS FOR FLOW PROCESSES IN THE ULTRACENTRIFUGE

A. INTRODUCTION

The starting point for the phenomenological theory of sedimentation processes in the ultracentrifuge is the derivation of flow (or flux) equations which describe the isothermal mass transport of thermodynamic components in a centrifugal field. For a binary solution, that is, a system which consists of a homogeneous solute and a solvent, a useful flow equation for the solute may be derived by resorting to a kinetic theory approach, in which transport of solute molecules through the solvent is considered to be the result of a centrifugal force, a buoyant force, and a diffusion force. This approach prevailed in the early days of the development of sedimentation theory; even now some textbooks of physical chemistry or biophysical chemistry adopt it in an account of sedimentation phenomena, probably because of its simplicity.

It has become clear in recent years that the kinetic theory must be replaced by nonequilibrium thermodynamics (or thermodynamics of irreversible processes) in order to achieve the general and rigorous derivation of flow equations for the ultracentrifuge. Although many others have contributed, the chief credit for this important recognition must be given to Hooyman. In this chapter, we show how the flow equations basic to the whole subject of this monograph are deduced from fundamental principles of nonequilibrium thermodynamics. In doing this, we shall often cite basic assumptions (or postulates) and equations of this new thermodynamics without going into their details. The reader will find necessary information on them in any of the recently published textbooks²⁻⁶ or review articles.^{7,8}

B. THE COORDINATE SYSTEM

The ordinary ultracentrifuge cell is a truncated sector of a cylinder as shown in Fig. 1.1. It is necessary to use a cell of this type because the force causing the motion of components in it acts radially from the axis of the rotor; use of a rectangular cell would produce convection arising from accumulation of matter at the side walls of the cell. Strictly speaking, even a sector-shaped cell is unable to prevent the components from convective

flows. The Coriolis force, which is necessarily involved in a rotating system as considered here, produces a transverse effect. Hooyman et al. showed that the Coriolis effect is almost completely negligible under the ordinary working conditions with the current ultracentrifuges. Therefore, we neglect it in the theoretical treatments given in the present monograph.

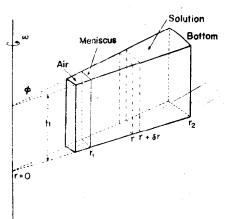


Fig. 1.1. The sector-shaped ultracentrifuge cell. A thin slice of volume indicated by chain lines is for the convenience of discussions given later. $r_2 - r_1$ is the length of solution column, h is the depth of solution column, and ϕ is the sector angle.

The flow equations assume simple forms if use is made of the system of cylindrical coordinates as shown in Fig. 1.1. Here r is the radial distance measured from the rotor axis, h is the distance parallel to the rotor axis, and ϕ is the sector angle. For cells designed for the Beckman-Spinco Model E ultracentrifuge, ϕ is 2, 2.5, or 4° and h ranges from 1.5 to 30 mm. The cell is filled with a solution which extends from $r=r_1$ to $r=r_2$. At the cylindrical boundary at $r = r_1$, the solution is in contact with an air bubble so that we have at this position a liquid-air interface, which is called the meniscus. Because the air bubble is admitted into the cell at atmospheric pressure while filling and before sealing the cell, the pressure of the solution at the meniscus is maintained at that of the atmosphere even though the rotor may spin under vacuum. The rigid cylindrical boundary at $r = r_2$ is called the *cell bottom*. Sometimes a thin layer of immiscible liquid which is denser than a given solution is inserted between the cell bottom and the solution in order to facilitate the measurement of the distribution of refractive indices or refractive index gradients in the region near the cell bottom. Such a liquid is usually called bottom liquid. When this is used, the liquid-liquid interface between it and the solution must be taken as the position for r_2 . The distance between r_1 and r_2 is referred to as the length of the solution column, or simply the solution depth or height. This length may be adjusted by changing the volume of a solution admitted into the cell. In conventional sedimentation velocity experiments it is about 1 cm, whereas in current sedimentation equilibrium experiments it may be adjusted to less than about 3 mm in order to speed up the attainment of the equilibrium (for the reason see Chapter 7).

Physically, it is obvious that under the geometrical conditions described above (with the neglect of the Coriolis effect), each component in the solution column moves only in the radial direction (either centrifugal or centripetal) when it is subjected to a centrifugal force, and that the physical situation at any given time during the centrifugation is identical along a circular arc of fixed radius. This suggests that for a given speed of rotation only r and time t appear as independent variables in the small forms of equations which describe flow processes in the ultracentrifuge cell.

C. DEFINITIONS OF FLOWS (OR FLUXES)

Consider a system which consists of q+1 inonreacting components. For convenience in presentation, the component 0 is specified as the solvent, and all others (labeled $1,2,\ldots,q$) are called solutes. For the moment, all solutes are assumed to be nonelectrolytes. Introduction of electrolyte components is deferred to Section K.

Suppose for simplicity that this system is contained in a straight tube of uniform cross section and is subject to some "forces" which may produce a unidirectional motion of each component along the tube. Such forces may be gradients of the total potential [the chemical potential plus the potentials due to external forces (mechanical, electric, magnetic, etc.)] and of temperature along the tube. Because any uniform motion of the tube as a whole does not give rise to irreversible processes in the system, we omit it from the subsequent considerations.

We set a coordinate origin 0 at some point on the tube and express the distance in the direction of the tube in terms of a variable x. Suppose there is at a certain point x a plane frame which is perpendicular and fixed to the tube. Each component passes through this frame either in the positive or the negative direction of the x-axis. We define the flow or flux of component k as the number of grams of component k per second which crosses 1 cm² of this frame, and we designate it by the symbol $(J_k)_c$. The unit of $(J_k)_c$ is g/cm^2 -sec. Here the subscript c implies that the frame considered is fixed to the tube. At a given time $(J_k)_c$ may vary with x, and at a given x it may change with time t. Let the c-scale concentration

(grams of a component per cubic centimeter of solution) be denoted by c_k and let the average velocity of molecules (or particles) of component k at the position x and a given time t be denoted by $(u_k)_c$. Then we have

$$(J_k)_c = c_k(u_k)_c \tag{1.1}$$

It should be noted that $(u_k)_c$ does not mean the local velocity of a particular molecule of component k but the average of velocities of all molecules of component k in a volume element at the position considered, where the volume element is taken very small macroscopically but large enough microscopically to accommodate a great number of molecules. Also we should notice that $(u_k)_c$ is the velocity relative to the tube fixed in space. Both c_k and $(u_k)_c$ are generally functions of x and t.

Next we allow the frame to move at each point on the x-axis with the velocity of solvent, $(u_0)_c$, at that point, and we denote the flow of component k relative to this solvent-fixed frame by $(J_k)_0$. Then we have obviously

$$(J_0)_0 = 0 (1.2)$$

The value of $(J_k)_0$ for component $k(k \neq 0)$ is the product of c_k and the velocity of component k relative to the solvent-fixed frame. Hence

$$(J_k)_0 = c_k [(u_k)_c - (u_0)_c]$$
 (1.3)

We refer to $(J_k)_0$ as the solvent-fixed flow of component k, whereas $(J_k)_c$ defined by equation 1.1 is called the cell-fixed flow of that component. The combination of equations 1.1 and 1.3 yields

$$(J_k)_0 = (J_k)_c - c_k(u_0)_c$$
 (1.4)

Use of equation 1.2 gives

$$(u_0)_c = \frac{(J_0)_c}{c_0} \tag{1.5}$$

Hence we have the relation

$$(J_k)_0 = (J_k)_c - \left(\frac{c_k}{c_0}\right)(J_0)_c$$
 (1.6)

We define a velocity $(u)_M$ by

$$(u)_{\mathsf{M}} = \frac{\sum_{k=0}^{q} c_k (u_k)_{\mathsf{c}}}{\sum_{k=0}^{q} c_k} \tag{1.7}$$

and call it the velocity of the local center of mass (relative to the tube) or the local barycentric velocity. The value of this velocity depends on the position x and the time t considered. Equation 1.7 may be put in the form

$$(u)_{M} = \frac{1}{\rho} \sum_{k=0}^{q} (J_{k})_{c}$$
 (1.8)

where ρ , the local density of the solution, is expressed by the sum of c_k over all components, that is,

$$\rho = \sum_{k=0}^{q} c_k \tag{1.9}$$

Obviously, ρ is a function of x and t. We define still another flow of component k relative to the frame moving with the velocity $(u)_{M}$, denote it by $(J_k)_{M}$, and term it the mass-fixed flow of component k. The frame to which this quantity is referred is called the mass-fixed frame. By definition we have

$$(J_k)_{M} = c_k [(u_k)_c - (u)_{M}]$$
 (1.10)

After summation of equation 1.10 over all components and use of equation 1.7, we obtain

$$\sum_{k=0}^{q} (J_k)_{\mathbf{M}} = 0 \tag{1.11}$$

This relation is basic for the mass-fixed flows, and it may be compared to equation 1.2, which applies for solvent-fixed flows. It is seen that the mass-fixed flows of q+1 components are not independent of each other, but are related linearly. Thus if q of them are known, the remaining one is automatically determined. By combining equations 1.1, 1.8, and 1.10 we obtain

$$(J_k)_{\mathsf{M}} = (J_k)_{\mathsf{c}} - \frac{c_k}{\rho} \sum_{k=0}^{q} (J_k)_{\mathsf{c}}$$
 (1.12)

which is to be compared to equation 1.6 for $(J_k)_0$. Obviously, $(J_k)_M$ is a function of x and t.

Finally, we define a velocity $(u)_{V}$ by

$$(u)_{V} = \frac{\sum_{k=0}^{q} \bar{v}_{k} c_{k}(u_{k})_{c}}{\sum_{k=0}^{q} \bar{v}_{k} c_{k}}$$
(1.13)

where \bar{v}_k is the partial specific volume of component k in the solution at the possion x and the time t considered. By using the well-known relation¹⁰

$$\sum_{k=0}^{q} \bar{v}_k c_k = 1 \tag{1.14}$$

equation 1.13 is reduced to

$$(u)_{V} = \sum_{k=0}^{q} \bar{v}_{k} c_{k} (u_{k})_{c}$$
 (1.15)

We call $(u)_v$ the velocity of the local center of volume; it generally varies with x and t. The volume-fixed flow of component k is then defined as the flow relative to that frame which moves with the velocity $(u)_v$, and is denoted here by $(J_k)_v$. It is a function of x and t and can be represented by

$$(J_k)_{V} = c_k [(u_k)_{c} - (u)_{V}]$$
 (1.16)

or

$$(J_k)_{V} = (J_k)_{c} - c_k(u)_{V}.$$
 (1.17)

Introduction of equation 1.1 into equation 1.15 gives

$$(u)_{V} = \sum_{k=0}^{q} \bar{v}_{k} (J_{k})_{c}$$
 (1.18)

Therefore, equation 1.17 may be written

$$(J_k)_V = (J_k)_c - c_k \sum_{i=0}^q \bar{v}_i (J_i)_c$$
 (1.19)

If both sides are multiplied by \bar{v}_k and summed over all components, there results

$$\sum_{k=0}^{q} \bar{v}_k (J_k)_{\mathbf{v}} = 0 \tag{1.20}$$

where equation 1.14 has been used. Equation 1.20 indicates that the volume-fixed flows of q+1 components are not independent of each other, but are related linearly. It may be compared to equation 1.11 for mass-fixed flows.

The solvent-fixed, mass-fixed, and volume-fixed flows defined above all may be regarded as special cases of the flows $(J_k)_R$ defined by a general relation:

$$\sum_{k=0}^{q} (a_k)_{\mathbf{R}} (J_k)_{\mathbf{R}} = 0 \tag{1.21}$$

where the $(a_k)_R(k=0,1,\ldots,q)$ are the set of coefficients characterizing the frame to which the $(J_k)_R$ refer.

For

$$(a_0)_R = 1, \qquad (a_k)_R = 0 \qquad (k = 1, 2, ..., q)$$
 (1.22)

equation 1.21 reduces to equation 1.2 for solvent-fixed flows; for

$$(a_k)_R = 1$$
 $(k = 0, 1, ..., q)$ (1.23)

equation 1.21 agrees with equation 1.11 for mass-fixed flows; and for

$$(a_k)_{\mathbf{R}} = \bar{v}_k \qquad (k = 0, 1, ..., q)$$
 (1.24)

equation 1.21 is identical to equation 1.20.

By assigning other values to $(a_k)_R$ we may define various frames of reference. The group of such frames is hereafter called the R^{\pm} group of reference frames for flows. It should be noted that the cell-fixed frame is in general not contained in this group: No set of $(a_k)_R$ exists that satisfies equation 1.21 when the $(J_k)_R$ are taken to be $(J_k)_c$, except for a special case which is discussed in Section G.3. In other words, except for such a case, the cell-fixed flows of all components in the solution are linearly independent of each other.

It can be shown that flows referred to any frame of the R-group are linearly related to those corresponding to any other frame of this group. Let two frames of reference belonging to the R-group be denoted by R' and R". By definition

$$\sum_{k=0}^{q} (a_k)_{R'} (J_k)_{R'} = 0, \qquad \sum_{k=0}^{q} (a_k)_{R'} (J_k)_{R'} = 0$$
 (1.25)

If the local velocity of frame R" relative to frame R' is represented by $(u)_{R'R'}$, we have the relation

$$(J_k)_{R''} = (J_k)_{R'} - c_k(u)_{R''R'}$$
(1.26)