Engineering Thermodynamics

ENGINEERING THERMODYNAMICS

Engineering Thermodynamics

394 pgs. | 174 figs. | 28 tbls.

S. Murugan

Associate Professor Department of Mechanical Engineering National Institute of Technology Rourkela

Copyright © 2014

ALPHA SCIENCE INTERNATIONAL LTD.

7200 The Quorum, Oxford Business Park North Garsington Road, Oxford OX4 2JZ, U.K.

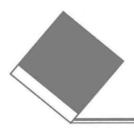
www.alphasci.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.

ISBN 978-1-84265-843-7

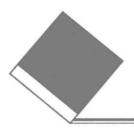
Printed in India

ENGINEERING THERMODYNAMICS



PREFACE

I am pleased to introduce the first edition of the textbook titled "Engineering Thermodynamics" to the students who have opted for "Engineering Thermodynamics" in their B.Tech Degree or AMIE as a part of their course. Thermodynamics is one of the important subjects in the courses of B.E/B.Tech Mechanical Engineering, Electrical and Electronics Engineering, Chemical Engineering, and Instrumentation Engineering, or in AMIE. The subject "Thermodynamics" requires special attention by any student as it involves both theory and analysis. Many students have an aversion to learn the subject as it has many concepts that make it a little complex. The subject is a foundation for their future, but, every student who learns it faces difficulty in understanding it thoroughly and deeply. Keeping this in mind, this book is written to make the students understand the subject easily. Although "Thermodynamics" is taught in Physics and Chemistry at the School level, the subject "Engineering Thermodynamics" is quite different for engineering students, as they apply the concepts of Thermodynamics in various applications, such as calculating engine efficiency, and heat or work values in thermal systems, such as boilers, turbines, compressors etc. The subject also deals with energy interactions in various systems, such as refrigeration and air conditioning systems.


After interaction and discussion with many readers of this subject, the author developed an interest to write this book. In each and every chapter, the necessary illustrations and examples are given, in areas where one may find some difficulty in understanding the theory. Solved and unsolved problems are given in each and every chapter, so that the readers will be able to practise different kinds of problems. This will enable the readers to solve similar kind of problems in their real time applications. Besides these problems, objective type and theory questions are also included at the end of each chapter. This will make the readers review and practise the subject with more confidence. This book is also useful to the readers of different categories who appear for competitive or aptitude examinations.

This book is written in an unconventional and a "Student friendly" style, so as to make any one be more confident in the subject. The contents of the book cover the syllabus framed by many of the Universities. The author believes that the book will definitely help the readers immensely. Any criticism or comments or suggestions are welcome for the improvement of the book.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Mr. N. K. Mehra, Publisher and Managing Director, Narosa Publishing House Pvt. Ltd., New Delhi, who readily accepted to publish this book. My special thanks to all the people involved in preparation of this textbook. I would also like to register my whole hearted thanks to the Editor and reviewers for their valuable comments to improve the layout of the book. It is worth noting that without the students' feedback it is impossible to get an appreciation of the book. Every comment by the students who read and gave their suggestions, made me to take a lot of time to improve the content of the book, according to their need. It is quite difficult to succeed in any task, if there is no encouragement from one's family members. It's my pleasure in thanking my parents, wife Mrs. S. Asha and daughter Mrs. M. Geetha who gave me full support in completing this task.

CONTENTS

Pref	ace		₹
Ack	nowledge	ements	vii
1.	UNITS	AND MEASUREMENT	1.1
1.1	Introd	luction to Thermodynamics	1.1
1.2	Units		1.1
	1.2.1	Base Units	1.1
	1.2.2	Derived Units	1.2
	1.2.3	Supplementary Units	1.2
1.3	Other	Systems of Units	1.3
1.4	Defini	ition and Measurement of Properties	1.3
	1.4.1	Mass and Weight	1.3
	1.4.2	Force	1.3
	1.4.3	Pressure	1.4
	1.4.4	Temperature	1.8
	1.4.5	Energy	1.12
	1.4.6	Heat	1.13
	1.4.7	Work	1.14
2.	INTRO	DUCTION TO IDEAL GASES	2.2
2.1	Introd	duction	2.1
2.2	Gas L	aws	2.1
	2.2.1	Boyle's Law	2.1
	2.2.2	Charles' Law	2.2
	2.2.3	Gay Lussac Law	2.2
2.3	Equat	tion of State	2.2
2.4	Avog	adro's Hypothesis	2.3
2.5	Unive	ersal Gas Constant (R)	2.3
2.6	Intern	nal Energy of Ideal Gas	2.4

K	Contents
A.	Conter

2.7	Enthalp	py of an Ideal Gas	2.4
2.8	Joule's	Law	2.5
2.9	Specific	: Heat Capacity	2.5
2.10	Specific	Heats of a Gas	2.6
	2.10.1	Heating of a Gas at Constant Pressure	2.6
	2.10.2	Heating of a Gas at Constant Volume	2.6
2.11	Relation	n between $C_{p'}$ and C_v	2.7
2.12	Molar S	Specific Heats of Gases	2.7
2.13	Propert	ties of Non-Reactive Mixtures	2.7
2.14	Gibbs-I	Dalton's Law	2.8
2.15	Amaga	t-Leduc Law of Partial Volume	2.9
2.16	Molecu	lar Weight of a Mixture of Ideal Gases	2.10
2.17	Grahan	n's Law of Diffusion	2.11
2.18	Relatio	nship between Volumetric (Molar), and Gravimetric	
	Analys	is (Mass Analysis)	2.11
2.19	Conver	sion From Gravimetric or Molar (Volumetric) Fraction	2.12
2.20		ons Relating Mass Fraction with Extensive Properties of	
	the Mix	cture of Gases	2.13
0			-
3.	IHEKW	IODYNAMIC SYSTEM AND FIRST LAW	3.1
3.1	Law of	Conservation of Energy	3.1
3.2	Thermo	odynamic System	3.1
	3.2.1	Types of Thermodynamic Systems	3.1
3.3	Termin	ologies	3.3
3.4	Thermo	odynamic Properties	3.3
	3.4.1	Intensive Property	3.3
	3.4.2	Extensive Property	3.3
3.5	State		3.3
	3.5.1	Change of State	3.4
3.6	Thermo	odynamic Process	3.4
3.7	Path		3.4
3.8	Thermo	odynamic Cycle	3.4
3.9	Equilib	rium	3.4
	3.9.1	Mechanical Equilibrium	3.5
	3.9.2	Chemical Equilibrium	3.5
	3.9.3	Thermal Equilibrium	3.5
	3.9.4	Thermodynamic Equilibrium	3.5
	3.9.5	Zeroth Law of Thermodynamics	3.5
3.10	Revers	ible Process	3.5

Contents	xi

3.11	Work T	ransfer	3.6
	3.11.1	Sign Convention of Work Transfer	3.6
	3.11.2	Work a Path Function	3.6
3.12	Heat Tr	ransfer	3.7
	3.12.1	Sign Convention of Heat Transfer	3.7
3.13	First La	aw of Thermodynamics	3.7
	3.13.1	Perpetual Motion Machine of the First Kind (PMM-I)	3.8
	3.13.2	Various Thermodynamic Processes	3.9
3.14	Flow P	rocesses or Open Systems	3.18
	3.14.1	Steady Flow Energy Equation (SFEE)	3.18
	3.14.2	Applications of Steady Flow Processes	3.20
3.15	Heat A	bsorbing Systems	3.20
	3.15.1	Boiler	3.20
	3.15.2	Evaporator	3.21
3.16	Heat R	ejection Systems	3.22
	3.16.1	Condenser	3.22
3.17	Work I	Developing Systems	3.22
	3.17.1	Turbine	3.23
3.18	Work A	Absorbing Systems	3.24
	3.18.1	Rotary Compressor	3.24
	3.18.2	Reciprocating Compressor	3.24
3.19	Other S	Systems	3.25
	3.19.1	Steam Nozzle	3.25
3.20	Determ	nination of Work Transfer in a Steady Flow Process	3.26
4.	SECON	ID LAW OF THERMODYNAMICS	4.1
4.1	Limitat	tions to the First Law of Thermodynamics	4.1
4.2	Heat E	ngine, Refrigerator and Heat Pump	4.2
	4.2.1	Heat Engine	4.2
	4.2.2	Refrigerator	4.2
	4.2.3	Heat Pump	4.3
4.3	Statem	ents of the Second Law of Thermodynamics	4.4
	4.3.1	Kelvin Planck Statement	4.4
	4.3.2	Clausius Statement	4.4
4.4	Violati	on of the Kelvin-Planck and Clausius Statements	4.5
4.5	Revers	ibility	4.7
	4.5.1	Irreversible Process	4.7
4.6	Carton	Cycle	4.8
4.7	Carnot	Theorem	4.9

xii Contents

		3	
4.8		nodynamic Temperature Scale	4.11
4.9		by of Perfect Gases	4.13
	4.9.1	Entropy	4.13
	4.9.2	Clausius Inequality	4.14
	4.9.3	Entropy - Property of a System	4.16
	4.9.4	Change in Entropy of a Perfect Gas in Various	4.10
		Thermodynamic Processes	4.18
5.	AVAIL	ABILITY AND IRREVERSIBILITY	5.1
5.1	Introd	uction	5.1
5.2	Availa	able Energy	5.2
	5.2.1	Energy Interaction with a Constant Temperature	
		Energy Source	5.2
	5.2.2	Heat Transfer in a Heat Exchange Process	5.3
5.3	Availa	ability in Thermodynamic Systems	5.4
	5.3.1	Reversible Work in Steady Flow Process	5.4
	5.3.2	Unsteady Open or Closed System	5.5
5.4	Dead !	State	5.6
6.	PROP	ERTIES OF PURE SUBSTANCE	6.1
6.1	Pure S	Substance	6.1
	6.1.1	Existence of Pure Substance	6.1
	6.1.2	Terminology	6.2
6.2	Steps	of Steam Formation	6.2
6.3	Pressu	re-Volume-Temperature Diagram	6.3
	6.3.1	T-v Diagram of Water-Steam	6.4
6.4	Satura	ation Pressure and Temperature	6.4
6.5	p-V D	iagram for Water	6.5
6.6	Prope	rty Diagrams of Water	6.7
6.7	Steam	Tables	6.7
6.8	Thern	nodynamic Properties of Pure Substances (Water an	
	6.8.1	Pressure	6.9
	6.8.2	Specific Volume	6.9
	6.8.3	Density of Steam	6.10
	6.8.4	Enthalpy of Water and Steam	6.10
	6.8.5	Specific Internal Energy	6.11
	6.8.6	Entropy of Steam	6.12
6.9	Deter	mination of the Dryness Fraction	6.14
	6.9.1	Separating Calorimeter	6.14

	6.9.2	Throttling Calorimeter	6.15
6.10	Non-Flo	ow Processes of Pure Substances	6.17
	6.10.1	Constant Volume Process	6.18
	6.10.2	Constant Pressure Process	6.19
	6.10.3	Constant Temperature Process	6.20
		Hyperbolic Process	6.21
	6.10.5	Reversible Adiabatic Process (Isentropic Process or	
		Constant Entropy Process)	6.21
	6.10.6	Polytropic Process	6.22
6.11		one and Internal Energy and Heat Transfer Calculations	
		Constant Volume Process	6.23
		Constant Pressure Process	6.24
		Constant Temperature Process	6.24
		Hyperbolic Process	6.25
		Reversible Adiabatic Process (Isentropic Process)	6.26
	6.11.6	, I	6.26
	6.11.7	Throttling Process	6.27
6.12	Mollier	Diagram	6.28
7.	RFAL G	AS MIXTURE	7.1
7.1	Introdu		7.1
7.2	Real Ga		7.1
7.3		of Attraction	7.1
		Van der Waal's Force of Attraction	7.2
	7.3.2		7.2
	7.3.3		7.2
	7.3.4	Effect of the Mass of Molecule	7.3
7.4		r Waal's Equation	7.3
	7.4.1	Correction for the size of the Molecules	7.5
	7.4.2	Correction on Pressure	7.5
	7.4.3	Determination of Critical Pressure (p_c) , Critical Volume	-
	7.4.4	(\bar{v}_c) and Critical Temperature (T_c)	7.6
	7.4.4	Demerits of Van der Waal's Equation	7.8
	7.4.5	Redlich-Kwang Equation	7.8
	7.4.6	Virial Equation	7.9
	7.4.7	Dieterici Equation	7.9
	7.4.8	Beattie Bridge Man Equation	7.9
	7.4.9	Berthelot Equation	7.10
	7.4.10	Mcleod Equation	7.11
	7.4.11	Wohl's Equation	7.12

xiv	Contents

7.5	Compr	essibility Factor	7.12
	7.5.1		7.13
		r	
8.	THERN	ODYNAMIC RELATIONS	8.1
8.1	Introdu	action	8.1
8.2	Overvi	ew of Mathematical Relations	8.1
	8.2.1	Cyclic Relation	8.2
	8.2.2	Gibbs Free Energy (or) Gibbs Function	8.3
	8.2.3	Helmotz Free Energy (or) Helmotz Function	8.3
8.3	Maxwe	ell's Relations	8.4
8.4	Tds Equ	uations	8.5
8.5	Useful	Relations between Partial Derivatives	8.7
8.6	The Cla	ausius Equations	8.8
8.7	Equation	on for Internal Energy and Enthalpy	8.10
8.8	Equation	on for Enthalpy	8.11
8.9	Joule-T	homson Coefficient	8.12
8.10	Therm	odynamic Relations using C_v and C_v	8.15
		mal Compressibility	8.18
		tient of Linear Expansion and Volume Expansion	8.18
		mal Compressibility and Adiabatic Compressibility	8.19
9.	PSYCH	ROMETRY	9.1
9.1	Introdu	uction	9.1
9.2	Terms	and Definition	9.1
	9.2.1	Dry Air	9.1
	9.2.2	Dry Bulb Temperature	9.2
	9.2.3	Wet Bulb Temperature	9.2
	9.2.4	Dew Point Temperature	9.2
	9.2.5	Specific Humidity or Humidity Ratio	9.3
	9.2.6	Relative Humidity	9,4
		Degree of Saturation	9.4
21.2	9.2.8	Carrier Equation for Partial Pressure of Water Vapour	9.5
9.3		rometer	9.5
0.4	9.3.1	Sling Psychrometer	9.5
9.4	_	c Enthalpy of Moist Air	9.6
9.5		atic Saturation	9.7
9.6		ometric Chart	9.8
9.7	Psychi	rometric Processes	9.9

	9.7.1	Sensible Cooling	9.10
	9.7.2	Sensible Heating	9.11
	9.7.3	Humidification	9.12
	9.7.4	Dehumidification	9.12
	9.7.5	Cooling and Dehumidification	9.13
	9.7.6	Heating and Humidification	9.14
9.8	Sensibl	le Heat Factor	9.15
9.9	Mixing	g of Air Streams	9.16
10.	FUEL	S AND COMBUSTION	10.1
10.1	Introdu	uction	10.1
10.2	Classif	ication of Fuels	10.1
	10.2.1	Solid Fuels	10.1
	10.2.2	Fuel Analysis	10.2
	10.2.3	Liquid Fuels	10.3
	10.2.4	Gaseous Fuels	10.6
10.3	Some I	mportant Fuel Properties	10.9
	10.3.1	Density	10.9
	10.3.2	Viscosity	10.9
	10.3.3	Calorific Value or Heating Value of Fuels	10.9
	10.3.4	Flash Point and Fire Point	10.10
	10.3.5	Pour Point	10.10
	10.3.6	Cloud Point	10.10
	10.3.7	Ignition Temperature	10.10
10.4	Detern	nination of the Heating Value of a Fuel	10.11
	10.4.1	Lower Calorific Value	10.11
	10.4.2	Heating Value of Gaseous Fuels	10.11
	10.4.3	Experimental Method for Determination of	
		the Heating Value	10.12
		Combustion Equations	10.14
10.6	Air Fu	el Ratios for Combustion	10.15
	10.6.1	Stoichiometric Air Fuel Ratio	10.15
	10.6.2	Excess Air	10.15
	10.6.3	Determination of Stoichiometric or Theoretical Air Fuel Ratio	10.15
10.7	Conve	rsion of Fuel Constituents Given in Volume to	
	Mass I	Percentage	10.17
10.8	Excess	Air Supplied Per kg of Fuel	10.18
10.9	Quant	ity of Carbon in Flue Gas	10.18

xvi	Contents

			1010
		ty of Flue Gas Per kg of Fuel Burnt	10.19
10.11		as Analysis	10.19
		Construction	10.20
		Method of Analysis	10.20
		Advantages	10.20
		Limitations	10.20
		Геmperature	10.20
10.13	3 Interna	I Energy of Combustion	10.22
10.14	Enthal	by of Combustion	10.22
10.15	Enthal	by of Formation	10.23
11.	AIR S	TANDARD CYCLES	11.1
11.1	Why A	ir Standard Cycles?	11.1
11.2	A Ther	modynamic Cycle	11.1
11.3	Air Sta	ndard Cycle Assumptions	11.2
11.4	The Ca	rnot Cycle	11.2
11.5	The Sti	rling Cycle	11.5
11.6	The Er	icsson Cycle	11.6
11.7	Import	ant Air Standard Cycles	11.6
	11.7.1	The Otto Cycle	11.7
		The Diesel Cycle	11.12
	11.7.3	The Dual Cycle	11.17
	11.7.4	The Lenoir Cycle	11.20
	11.7.5	The Atkinson Cycle	11.22
	11.7.6	The Brayton Cycle	11.25
11.8	Compa	arison between Otto, Diesel and Brayton Cycles	11.28
11.9	Compa	arison of Air Standard Efficiencies	11.29
	11.9.1	Same Compression Ratio and Heat Supplied	11.29
	11.9.2	Same Maximum Pressure and Heat Supplied	11.30
	11.9.3	Same Maximum Temperature and Heat Rejected	11.30
	11.9.4	Same Compression Ratio and Heat Rejected	11.31
	11.9.5	Same Maximum Pressure and Output	11.31
Inde	x		

...I.1

CHAPTER

1.1 INTRODUCTION TO THERMODYNAMICS

The science, which deals with the analysis of various machines by quantity, which involves the transfer of energy into useful work, is called thermodynamics. Many energy conversion devices require the transfer of energy into work. Thermodynamics is applied in various thermal equipments like steam turbines, boilers, condensers, cooling towers, heat exchangers, reciprocating engines, refrigerators, air conditioners, heat pumps etc. It is also used in internal combustion engines, turbo jets and rockets etc. In all these cases, the design of the thermal equipments essentially requires an in-depth knowledge of thermodynamics. Hence, the study of engineering thermodynamics is very important in the field of engineering.

1.2 UNITS

In thermodynamics, each and every parameter is measured and the final quantity is expressed in a value or number followed by a unit. Over many years, a large number of standards have been defined for physical measurements and many systems of units have been derived. There was an attempt to simplify the language of science by the adoption of a system of units. Such a system is called the SI unit system, commonly known as the International System of Units (abbreviated SI from the French le System International units), and is used universally. This system of units was the outcome of a resolution of the 9th general conference of weights and measures (CGPM) in 1960, and from that, the establishment of a complete set of rules for units of measurement, was made.

The SI unit system has three divisions:

- 1. Base units
- 2. Derived units
- 3. Supplementary units.

1.2.1 Base Units

The base unit is the first division of SI units, in which seven kinds of fundamental quantities are measured. They are given in Table 1.1.

- (i) Meter (m): It is defined as 1650 763.73 of the wavelength in vacuum of the orange-red light emitted by $^{86}_{36}$ K in the transition of $2p_{10}$ to 5 d_5 .
- (ii) Kilogram (kg): It is defined as the mass of a platinum-iridium cylinder kept at the International Bureau of weights and measures at serves near Paris, France. Originally it is equal to the mass of a cubical decimeter of water at its maximum density.
- (iii) Second (s): It is the time spent by 9 192 631 770 cycles of radiation from hyperfine transition in Cesium, when unperturbed by the external fields.
- (iv) Ampere (A): It is the current, which is maintained in each of two parallel wires of infinite length placed in vacuum, 1 meter apart, so as to produce a force of 2×10^{-7} newtons per meter length.
- (v) Kelvin (K): It is the fraction of 1/273.16 of the thermodynamic temperature of the triple point of water.
- (vi) Candela (cd): It is the luminous intensity in a given direction due to a source which emits monochromatic radiation of frequency of 540×10^{12} Hz and whose radiant intensity in that direction is 1/683 watt per steradian.
- (vii)Mole (mol): It is defined as the amount of substance of a system, which contains as many elementary entities as there are atoms in 0.012 kg of the carbon isotope $6C_{12}$.

Measurable quantity	Units	Symbol
Length	Meter	m
Mass	Kilograms	kg
Time	Seconds	S
Electric current	Ampere	A
Temperature	Kelvin	K
Luminous intensity	Candela	Cd
Amount of substance	Mole	mol

Table 1.1 Basic Measurements with Units

1.2.2 Derived Units

The derived units are obtained from the base units. For example, the unit of density is kg/m³, which is obtained from the base units of mass (kg) and length (m).

1.2.3 Supplementary Units

Two supplementary units are defined in SI units. 1. Radian 2. Steradian. These two units are meant for plane and solid angles respectively. They are given in Table 1.2.

(a) Radian (rad): It is the plane angle between two radii of a circle, which cut on the circumference of an arc equal in length to the radius.

(b) Steradian (sr): It is the solid angle, which has its vertex in the centre of a sphere, and cuts off an area of the surface of the sphere, equal to that of a square, with sides of equal length to the radius of the same sphere.

Table: 1.2 Angular Measurements with Units

Measurable quantity	Units	Symbol	
Plane angle	Radian	rad	
Solid angle	Steradian	sr	

1.3 OTHER SYSTEMS OF UNITS

Some other systems of units are still in use. They are (i) CGS (ii) FPS (iii) MKS.

1.4 DEFINITION AND MEASUREMENT OF PROPERTIES

1.4.1 Mass and Weight

The amount of matter contained by a body is known as the mass. The basic unit of mass is the kilogram. Weight is the force exerted by gravity on the mass of a body or substance. The weight of the body varies from place to place, because the value of the constant of proportionality varies from place to place. As per Newton's second law of motion, the weight $w = 1/g_c$. mg

Where,

 g_c = Constant of proportionality (g_c = 1)

m = Mass

g = Acceleration due to gravity.

1.4.2 Force

Force is that which produces or tends to produce a change in the state of rest or of uniform motion, of a body. Newton's second law of motion states that the applied force or impressed force is directly proportional to the rate of change of momentum.

Suppose,

m = Mass of the body

u =Initial velocity of the body

v = Final velocity of the body

a = Constant acceleration

t = Time required to change the velocity from u to v

Momentum = Mass × velocity